分形布朗运动(fractal Brownian movement)
在自然界中,分子、大分子、病毒、粒子等都由于热涨落而以随机碰撞的形式不停地运动,这种运动称为布朗运动。
布朗运动的粒子位置是时间的随机函数,对归一化独立高斯随机过程〈ξ〉,布郎粒子的位置增量是H(0<H<1,称为赫斯特指数)的函数,对寻常布朗运动H=1/2,当它不等于1/2时,这时的布朗运动就叫做分形布朗运动。
应用1:
分形作为描述自然界极不规则极为复杂现象的数学工具,目前已被引入到地形插值的研究中。分形是一种标度不变性,是系统的部分以某种方式与其整体相似的特性。利用这种特性可以从大尺度的数据插值得到小尺度的信息。地形表面分形插值利用自然地形具有的随机抖动和自相似的特点,通过已知的三维表面数据获得地形表面的分形特征,再利用这些分形特征在插值过程中对地形表面做原地貌特征的恢
复[2]。插值出来的地形能较好地反映地形地貌的复杂和不规则性。基于这些优点,分形技术成为地形地貌研究中的一种重要的崭新方法。目前分形技术在地形中研究主要集中在两个方面:一是对分形插值算法的研究,不断提出和改进算法以适合不同地形地貌的模拟[2-4];二是将分形技术应用到不同地形地貌的模拟和分类上,如已经出现的对黄土高原、塌陷地区和山脉地形的模拟[5-7]。
水下地形的分形布朗运动数学模型分形布朗运动(fractional Brownian motion,fBm)是由B.B.Mandelbrot 和V.Ness[7]引入。它是定义在某概率空间上的一随机过程,具有统计自相似性,对于任意自变量,该过程的增量具有高斯分布,而且其方差和自变量之差的2H 次幂成正比[7],当其自变量为地形数据时就得到了分形布朗场,其满足
重要来源:分形布朗运动在水下地形模拟中的应用
应用2:
在不损坏原木表面和结构的前提下,准确地检测出原木内部缺陷,是充分利用森林资源的重要手段,对科学用材、合理选材,有着重要的意义。本文采用X射线方法作为检测手段,根据射线透过木材后强度的差异,得到原木图像。运用分形理论建立原木X射线成像数学模型对采集到的原木图像进行处理和分析,判断被检测原木内部是否存在缺陷和检测缺陷细节。本文的研究对象为两种常见的原木缺陷——空心和漏节。 本文应用两种分形方法进行研究:一种方法是采用计算盒子维数法,将原木图像分割成小的子区域,计算每个子区域的盒子维数,研究表明背景部分与边缘部分的分形维数存在一定程度的差别,提取奇异性的分维数值,他们的集合即是缺陷边缘所在。另一种方法是采用分形布朗函数法,分形理论中的分形布朗随机场是描述自然景物的有效方法,原木图像可以被认为是随机运动形成的灰度不同的分形布朗运动图。当图像分形参数值大于1时,则图像灰度表面的分形维数小于2,小于物体灰度表面的拓扑维数,因而是不可能的,即分形参数发生了奇异。这些分形参数发生奇异的地方就是不同纹理的边缘,故认为分形参数等于1即为阈值,分形参数大于1的部分被判为边缘,小于1的部分为背景区域,再由此计算对应位置的分形维数,分形维数发生奇异的地方即为缺陷的边缘或交界处。 本文首先对原木图像进行直方图均衡、滤波、图像增强等预处理,使得处理后的图像分形特征更加明显,更适合后续的处理和分析。从预处理后的X射线图像数据中提取缺陷部分所隐含的特征信息,用分形维数的大小来定量描述原木图像的不规则程度。本文对采集的100个原木样本图片进行实验研究,上述两种方法检测原木内部缺陷的有效率均达到95%,实验结果证明此方法检测原木内部缺陷效果明显。该方法同样适用于原木其他内部缺陷的检测。本文的研究对推进分形理论的应用有重要意义,同时也为数字图像处理和边缘检测提供了一条新途径。
http://hi.baidu.com/cwsvip/blog/item/a59a223f196c77ce7c1e717c.html
应用3:
图像分形维数计算及其边缘提取
为提高遥感影像中地物边缘信息的提取精度,以离散分形布朗随机场(DFBR:Discrete Fractal Brown Random field)模型为依据,尝试设计并利用Matlab编程实现一种基于遥感影像单个像元的分形维数计算算法。该算法将影像的灰度空间映射成分形维数空间,然后在该空间进行变换和边缘检测。地物空间分布及其影纹结构边缘特征的差异,使计算分形维数所选窗口大小成为关键。选取研究区局部地段高空间分辨率遥感影像作为实验数据,通过计算不同窗口下像元分形维数,得到最佳边缘信息提取的计算窗口。实验结果表明,该算法在同类计算中更符合遥感数据的特点,提高了遥感影像地物边缘信息提取精度。
(http://xuebao.jlu.edu.cn/xxb/CN/abstract/abstract8618.shtml)
其他: