Description
给出a,b,求
∑i=ablcm(i,b)
∑
i
=
a
b
l
c
m
(
i
,
b
)
a,b<=1e9,数据组数<=1e5,答案对1e9+7取模
Solution
看到gcd想反演(然而这个是lcm)
这个反演不是正常套路
坑了我好久才跳出来
首先
ans=b∑d|b1d∑i=abi[gcd(i,b)=d]
a
n
s
=
b
∑
d
|
b
1
d
∑
i
=
a
b
i
[
gcd
(
i
,
b
)
=
d
]
=b∑d|b∑i=⌈ad⌉bdi[gcd(i,bd)=1]
=
b
∑
d
|
b
∑
i
=
⌈
a
d
⌉
b
d
i
[
g
c
d
(
i
,
b
d
)
=
1
]
然后到这里就有些推不下去了
但其实有种操作叫做 ∑d|nμ(d)=[n=1] ∑ d | n μ ( d ) = [ n = 1 ]
所以我们可以强行把上面这个式子套上mu
而不是用反演的常用套路设f(x)和g(x)把mu套进去
如果你去设f(x)和g(x)你会发现g(x)也非常难化
我们继续
ans=b∑d|b∑i=⌈ad⌉bdi∑d′|gcd(i,bd)μ(d′)
a
n
s
=
b
∑
d
|
b
∑
i
=
⌈
a
d
⌉
b
d
i
∑
d
′
|
gcd
(
i
,
b
d
)
μ
(
d
′
)
=b∑d|b∑d′|bdμ(d′)∑i=⌈ad⌉bd[imodd′=0]
=
b
∑
d
|
b
∑
d
′
|
b
d
μ
(
d
′
)
∑
i
=
⌈
a
d
⌉
b
d
[
i
mod
d
′
=
0
]
=b2∑d|b∑d′|bdμ(d′)d′(⌊bdd′⌋+⌈add′⌉)(⌊bdd′⌋−⌈add′⌉+1)
=
b
2
∑
d
|
b
∑
d
′
|
b
d
μ
(
d
′
)
d
′
(
⌊
b
d
d
′
⌋
+
⌈
a
d
d
′
⌉
)
(
⌊
b
d
d
′
⌋
−
⌈
a
d
d
′
⌉
+
1
)
根据套路枚举T=dd’,
ans=b2∑T|b(⌊bT⌋+⌈aT⌉)(⌊bT⌋−⌈aT⌉+1)∑d|Tμ(d)d
a
n
s
=
b
2
∑
T
|
b
(
⌊
b
T
⌋
+
⌈
a
T
⌉
)
(
⌊
b
T
⌋
−
⌈
a
T
⌉
+
1
)
∑
d
|
T
μ
(
d
)
d
这样我们就只需要枚举b的约数就可以了
但是还有一部分要处理,就是那个 ∑d|Tmu(d)d ∑ d | T m u ( d ) d
显然可以线筛但是b太大不兹瓷
根据莫比乌斯反演的性质我们可知 f(T)=∑d|Tmu(d)d f ( T ) = ∑ d | T m u ( d ) d 时f(T)也是积性函数
那么我们可以知道 f(pk)=1−p f ( p k ) = 1 − p
然后再枚举约数的同时求出f就可以做到 O(n−−√) O ( n ) 处理询问
于是总复杂度大概是 O(Tn−−√) O ( T n ) ,在数据随机的情况下可以在1s内通过此题
UPD:写完才发现上面很多个下取整是没必要写的
不过没关系大家看得懂就行了_ (:з」∠) _
各位dalao有什么更好的方法欢迎拍打喂食