[51nod1190]最小公倍数之和V2

Description

给出a,b,求

i=ablcm(i,b) ∑ i = a b l c m ( i , b )

a,b<=1e9,数据组数<=1e5,答案对1e9+7取模

Solution

看到gcd想反演(然而这个是lcm)
这个反演不是正常套路
坑了我好久才跳出来
首先

ans=bd|b1di=abi[gcd(i,b)=d] a n s = b ∑ d | b 1 d ∑ i = a b i [ gcd ( i , b ) = d ]

=bd|bi=adbdi[gcd(i,bd)=1] = b ∑ d | b ∑ i = ⌈ a d ⌉ b d i [ g c d ( i , b d ) = 1 ]

然后到这里就有些推不下去了
但其实有种操作叫做 d|nμ(d)=[n=1] ∑ d | n μ ( d ) = [ n = 1 ]
所以我们可以强行把上面这个式子套上mu
而不是用反演的常用套路设f(x)和g(x)把mu套进去
如果你去设f(x)和g(x)你会发现g(x)也非常难化
我们继续
ans=bd|bi=adbdid|gcd(i,bd)μ(d) a n s = b ∑ d | b ∑ i = ⌈ a d ⌉ b d i ∑ d ′ | gcd ( i , b d ) μ ( d ′ )

=bd|bd|bdμ(d)i=adbd[imodd=0] = b ∑ d | b ∑ d ′ | b d μ ( d ′ ) ∑ i = ⌈ a d ⌉ b d [ i mod d ′ = 0 ]

=b2d|bd|bdμ(d)d(bdd+add)(bddadd+1) = b 2 ∑ d | b ∑ d ′ | b d μ ( d ′ ) d ′ ( ⌊ b d d ′ ⌋ + ⌈ a d d ′ ⌉ ) ( ⌊ b d d ′ ⌋ − ⌈ a d d ′ ⌉ + 1 )

根据套路枚举T=dd’,
ans=b2T|b(bT+aT)(bTaT+1)d|Tμ(d)d a n s = b 2 ∑ T | b ( ⌊ b T ⌋ + ⌈ a T ⌉ ) ( ⌊ b T ⌋ − ⌈ a T ⌉ + 1 ) ∑ d | T μ ( d ) d

这样我们就只需要枚举b的约数就可以了
但是还有一部分要处理,就是那个 d|Tmu(d)d ∑ d | T m u ( d ) d
显然可以线筛但是b太大不兹瓷
根据莫比乌斯反演的性质我们可知 f(T)=d|Tmu(d)d f ( T ) = ∑ d | T m u ( d ) d 时f(T)也是积性函数
那么我们可以知道 f(pk)=1p f ( p k ) = 1 − p
然后再枚举约数的同时求出f就可以做到 O(n) O ( n ) 处理询问
于是总复杂度大概是 O(Tn) O ( T n ) ,在数据随机的情况下可以在1s内通过此题

UPD:写完才发现上面很多个下取整是没必要写的
不过没关系大家看得懂就行了_ (:з」∠) _
各位dalao有什么更好的方法欢迎拍打喂食

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值