51nod 1190 最小公倍数之和 V2(莫比乌斯反演)

**********数论********** 同时被 2 个专栏收录
18 篇文章 0 订阅
9 篇文章 0 订阅

题意:

1<=a<=b<=109i=ablcm(i,b)

分析:

i=ablcm(i,b)=i=abibgcd(i,b)=bda<=i<=bid(gcd(i,b)=d)=bd|bad<=i<=bdi(gcd(i,bd)=1)=bd|bad<=i<=bdid|gcd(i,bd)μ(d)=bd|bd|bdμ(d)ad<=i<=bd,d|ii=bd|bd|bdμ(d)d(add+bdd)(bddadd+1)2=bd|bd|bdμ(d)d(add+bdd)(bddadd+1)2=bd|b(ad+bd)(bdad+1)2d|dμ(d)d

最后一步转化是另 d=dd

做到最后发现需要枚举 b 的所有约数,此处我用dfs,上一次写的状压现在 t 掉了,因为枚举了好多重复的约数。b的约数做多不超过 200 个。还有一个问题,如何求 f(d)=d|dμ(d)d

易知: f(d) 是一个积性函数, f(p)=1p,f(pk)=f(p) 此处 p 为素数。
所以枚举约数d是,暴力判断 b 的所有不同的质因子是不是能够整除d,如果能的话,res=resf(p)=res(1p)

算一下复杂度: n 分解质因数复杂度不超过o(n) dfs n 所有的约数,最大复杂度不超过o(256),枚举约数,暴力判断是不是能够整除, o(2568) ,n的不同约数个数不超过9个。
所以总的最大复杂度为 o(T(n+2568)) ,注意所有数据都达到不了这个复杂度。

下面是代码:

#include <bits/stdc++.h>
#define LL long long
#define FOR(i,x,y)  for(int i = x;i < y;++ i)
#define IFOR(i,x,y) for(int i = x;i > y;-- i)

using namespace std;

const LL Mod = 1000000007;
const int maxn = 100010;
const LL inv = 500000004;

LL a,b;
int prime[maxn];
bool check[maxn];
int pri[35],pri_cnt,len[35];
vector <int> fac;

void Mobius(){
    memset(check,false,sizeof(check));
    prime[0] = 0;
    FOR(i,2,maxn){
        if(!check[i]){
            prime[++prime[0]] = i;
        }
        FOR(j,1,prime[0]+1){
            if(i*prime[j] >= maxn)  break;
            check[i*prime[j]] = true;
            if(i%prime[j] == 0) break;
        }
    }
}

void dfs(int res,int l){
    if(l >= pri_cnt)    {fac.push_back(res);return;}
    int tem = 1;
    dfs(res,l+1);
    FOR(i,1,len[l]+1){
        tem *= pri[l];
        dfs(res*tem,l+1);
    }
}

void Get_Fac(){
    pri_cnt = 0;
    int b_c = b;
    FOR(i,1,prime[0]+1){
        if(prime[i]*prime[i] > b_c) break;
        if(b_c % prime[i] == 0) {pri[pri_cnt++] = prime[i]; len[pri_cnt-1] = 0;}
        while(b_c % prime[i] == 0)  {b_c /= prime[i];len[pri_cnt-1] ++;}
    }
    if(b_c > 1) {pri[pri_cnt++] = b_c; len[pri_cnt-1] = 1;}
    fac.clear();
    dfs(1,0);
}

void work(){
    Get_Fac();
    LL ans = 0;
    FOR(i,0,(int)fac.size()){
        int v = fac[i];
        LL tt = a+v-1;
        LL tem = (((tt/v+b/v)%Mod)*((b/v-tt/v+1+Mod)%Mod)%Mod)*inv%Mod;
        LL res = 1;
        FOR(j,0,pri_cnt){
            if(v % pri[j])  continue;
            LL t = (1-pri[j]+Mod)%Mod;
            res = (res*t)%Mod;
        }
        ans += (res*tem)%Mod;
        ans %= Mod;
    }
    ans = (ans*b)%Mod;
    printf("%lld\n",ans);
}

int main()
{
    //freopen("test.in","r",stdin);
    //freopen("out.txt","w",stdout);
    Mobius();
    int T;  scanf("%d",&T);
    while(T--){
        scanf("%lld%lld",&a,&b);
        work();
    }
    return 0;
}
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值