[牛客网Wannafly挑战赛23E]排序

###Description
随机一个2*n的排列,将奇数位从小到大排序,求逆序对个数的期望
比如说,4,6,1,5,3,2排序后会变成1,6,3,5,4,2,逆序对个数为8
n<=5e7

###Solution
做了好几节数学课的说
根据期望的线性性,我们只需要枚举两个位置,将这两个位置为逆序对的概率相加
偶数位和偶数位之间的显然是n*(n-1)/4,奇数位和奇数位之间的显然为0,我们只需要考虑奇数和偶数
考虑枚举第i个奇数位是j,在i后面的偶数位都是等价的,同理在i前面的偶数位也都是等价的
设Pi,j表示第i个奇数位是j的排列的概率,那么这部分的答案为:
∑ i = 1 n ∑ j = 1 2 n P i , j ∗ ( n − i + 1 ) ∗ ( j − i ) + ( i − 1 ) ∗ ( n − j + i ) n \sum_{i=1}^{n}\sum_{j=1}^{2n}Pi,j*{(n-i+1)*(j-i)+(i-1)*(n-j+i)\over n} i=1nj=12nPi,jn(ni+1)(ji)+(i1)(nj+i)
考虑Pi,j,相当于从j-1个比j小的数中选择i-1个放在i前面,从2n-j个比j大的数中选择n-i个放在后面
那么 P i , j = ( i − 1 j − 1 ) ( n − i 2 n − j ) ( n ! ) 2 2 n ! Pi,j={(^{j-1}_{i-1})(^{2n-j}_{n-i})(n!)^2\over {2n!}} Pi,j=2n!(i1j1)(ni2nj)(n!)2
接下来我们来化简式子,比如考虑(n-i+1)(j-i)这一项,将组合数划开:
∑ j = 1 2 n ∑ i = 1 n ( n − i + 1 ) ( j − i ) ( j − 1 ) ! ( 2 n − j ) ! ( j − i ) ! ( i − 1 ) ! ( n − i ) ! ( n − j + i ) ! \sum_{j=1}^{2n}\sum_{i=1}^{n}(n-i+1)(j-i){(j-1)!(2n-j)!\over (j-i)!(i-1)!(n-i)!(n-j+i)!} j=12ni=1n(ni+1)(ji)(ji)!(i1)!(ni)!(nj+i)!(j1)!(2nj)!
考虑把(n-i+1)变成(n-i),额外多出一项,那么式子变成了
∑ j = 1 2 n ∑ i = 1 n ( n − i ) ( j − i ) ( j − 1 ) ! ( 2 n − j ) ! ( j − i ) ! ( i − 1 ) ! ( n − i ) ! ( n − j + i ) ! \sum_{j=1}^{2n}\sum_{i=1}^{n}(n-i)(j-i){(j-1)!(2n-j)!\over (j-i)!(i-1)!(n-i)!(n-j+i)!} j=12ni=1n(ni)(ji)(ji)!(i1)!(ni)!(nj+i)!(j1)!(2nj)!
∑ j = 1 2 n ∑ i = 1 n ( j − 1 ) ! ( 2 n − j ) ! ( j − i − 1 ) ! ( i − 1 ) ! ( n − i − 1 ) ! ( n − j + i ) ! \sum_{j=1}^{2n}\sum_{i=1}^{n}{(j-1)!(2n-j)!\over (j-i-1)!(i-1)!(n-i-1)!(n-j+i)!} j=12ni=1n(ji1)!(i1)!(ni1)!(nj+i)!(j1)!(2nj)!
我们尝试把右边再写成组合数的形式
∑ j = 1 2 n ∑ i = 1 n ( j − 1 ) ( 2 n − j ) ( j − 2 ) ! ( 2 n − j − 1 ) ! ( j − i − 1 ) ! ( i − 1 ) ! ( n − i − 1 ) ! ( n − j + i ) ! \sum_{j=1}^{2n}\sum_{i=1}^{n}(j-1)(2n-j){(j-2)!(2n-j-1)!\over (j-i-1)!(i-1)!(n-i-1)!(n-j+i)!} j=12ni=1n(j1)(2nj)(ji1)!(i1)!(ni1)!(nj+i)!(j2)!(2nj1)!
∑ j = 1 2 n ∑ i = 1 n ( j − 1 ) ( 2 n − j ) ( i − 1 j − 2 ) ( n − i − 1 2 n − j − 1 ) \sum_{j=1}^{2n}\sum_{i=1}^{n}(j-1)(2n-j)(^{j-2}_{i-1})(^{2n-j-1}_{n-i-1}) j=12ni=1n(j1)(2nj)(i1j2)(ni12nj1)
根据范德蒙恒等式,原始式子就变成了
∑ j = 1 2 n ( j − 1 ) ( 2 n − j ) ( n − 2 2 n − 3 ) \sum_{j=1}^{2n}(j-1)(2n-j)(^{2n-3}_{n-2}) j=12n(j1)(2nj)(n22n3)
组合数可以和前面的 n ! ( n − 1 ) ! 2 n ! n!(n-1)!\over {2n!} 2n!n!(n1)!约掉
另外三项也可以用相同的方法化成只和j相关的式子*一个组合数
我们最后的式子就变成了 1 4 n − 2 ∑ j = 1 2 n ( j − 1 ) ( 2 n − j + 1 ) {1\over {4n-2}}\sum_{j=1}^{2n}(j-1)(2n-j+1) 4n21j=12n(j1)(2nj+1)
然后运用一些基础的知识可以把式子变成 4 n 2 + 2 n 12 4n^2+2n\over 12 124n2+2n!
加上 n ( n − 1 ) 4 n(n-1)\over 4 4n(n1)就变成了 7 n 2 − n 12 7n^2-n\over 12 127n2n
也就是说上面这么一大串式子最后可以O(1)出解
是不是很奇妙呢

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值