牛客网Wannafly挑战赛15 A.最小化价格

A:最小化价格

题目链接:点击打开链接

题目大意: 现有n组人,m个地点,给出每组人的人数,每个地点可容纳的最大人数和选择的价格

要求一种方式,使得每组人都到一个各不相同的地点,最小化选择的价格
每个队伍的人都要在同一个地方每个地方只能有一个队伍

题目思路:

    1.按照地点容纳数量从小到大排序

    2.将n组人的人数从小到大排序

    3.设置一个从小到大的优先队列,让j=m-1,i从n-1到1循环,如果能放得下,那么就往优先队列里面添加j对应的value

    4.优先队列从大的往小的装,如果能装下大的,那么它肯定能装下比它小的,然后取优先队列的前n项

#include <iostream>
#include<cstdio>
#include <algorithm>
#include<queue>
using namespace std;
int n,m;
const int maxn=1e5+5;
int a[maxn];
 
struct node{
int num;
int val;
}b[maxn];
 
int ans=0;
bool cmp(node a,node b)
{
    return a.num<b.num;
}
int main()
{
    int ok=0;
    scanf("%d%d",&n,&m);
 
    for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
    for(int i=0;i<m;i++)
    {
        int q,w;
        scanf("%d%d",&q,&w);
       b[i].num=q;
       b[i].val=w;
    }
   sort(b,b+m,cmp);
   sort(a,a+n);
  priority_queue<int,vector<int>,greater<int> >s;
  int j=m-1;
  for(int i=n-1;i>=0;i--)
  {
      for(j;a[i]<=b[j].num;j--)s.push(b[j].val); //这是很妙的一步操作,是从大的往小的装
      if(s.empty()){printf("-1\n");return 0;} //如果没装完,队列就空了,说明无解
      ans+=s.top();
      s.pop();
  }
  printf("%d\n",ans);
    return 0;
}

原先做法如下:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 100005;
 
struct node{
    int w,c;
}e[maxn];
int n,m,a[maxn];
long long ans;
 
bool cmp(const node &a,const node &b)
{
    if(a.w==b.w)
        return a.c<b.c;
    return a.w<b.w;
}
 
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<n;i++)
        scanf("%d",&a[i]);
    for(int i=0;i<m;i++)
        scanf("%d%d",&e[i].w,&e[i].c);
    sort(a,a+n);
    sort(e,e+m,cmp);
    int cnt = n-1;
    int tot = m-1;
    while(cnt>=0&&tot>=0)
    {
        if(a[cnt]<=e[tot].w)
        {
            ans += e[tot].c;
            cnt--;
            tot--;
        }
        else
            tot--;
    }
    if(tot==-1&&cnt>=0)
        cout<<-1<<endl;
    else
        cout<<ans<<endl;
    return 0;
}
这样做就会产生一个问题,同样是能容纳下,我会选取容量高的那个(无论价格,仅在容量一样的情况下对价格排序是不全面的),这样我们就看到了优先队列的好处
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

总想玩世不恭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值