棋盘问题
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions:56845 | Accepted: 27372 |
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
与N皇后问题类似
代码:
#include<cstdio>
#include<string.h>
using namespace std;
int n,m,ans;
char t[10][10];
bool r[10];
void dfs(int row,int num)
{
if(num==m)
{
ans++;
return;
}
if(m-num>n-row)return;
for(int i=row;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(!r[j]&&t[i][j]=='#')
{
r[j]=1;
dfs(i+1,num+1);
r[j]=0;
}
}
}
}
int main()
{
int i,j;
while(~scanf("%d%d",&n,&m))
{
if(n==-1&&m==-1)break;
for(i=0;i<n;i++)
scanf("%s",&t[i]);
ans=0;
memset(r,0,sizeof(r));
dfs(0,0);
printf("%d\n",ans);
}
return 0;
}