链接:
https://www.nowcoder.com/acm/contest/69/D
来源:牛客网
来源:牛客网
题目描述
这是一个关于二维格子状迷宫的题目。迷宫的大小为N*M,左上角格子座标为(1,1)、右上角格子座标为(1,M)、左下角格子座标为(N,1)、右下角格子座标为(N,M)。每一格都用-1到10
9之间的整数表示,意义分别为:-1为墙壁,0为走道,而1到10
9之间的正整数代表特殊的走道。
蜥蜴最初位于迷宫的座标(1,1)的格子,每一步蜥蜴只能往上、下、左、右、左上、右上、左下、右下八个方向之一前进一格,并且,他也不能走出迷宫边界。蜥蜴的目的地是走到迷宫的右下角格子,也就是座标位置(N,M)。我们想要动一些手脚,使得蜥蜴没有办法从(1,1)出发并抵达(N,M)。我们学会了一个邪恶的法术,这个法术可以把特殊的走道变成墙壁,施法一次的代价为表示该特殊走道的正整数。
假设,我们可以在蜥蜴出发之前不限次数的使用这个邪恶的法术,所花的总代价即为每次施法代价的总和,蜥蜴出发之后就不能再使用这个法术了,请问让蜥蜴没办法达到终点所必须花费的最小总代价是多少呢?
注意,0所代表的走道是无法变为墙壁的。
蜥蜴最初位于迷宫的座标(1,1)的格子,每一步蜥蜴只能往上、下、左、右、左上、右上、左下、右下八个方向之一前进一格,并且,他也不能走出迷宫边界。蜥蜴的目的地是走到迷宫的右下角格子,也就是座标位置(N,M)。我们想要动一些手脚,使得蜥蜴没有办法从(1,1)出发并抵达(N,M)。我们学会了一个邪恶的法术,这个法术可以把特殊的走道变成墙壁,施法一次的代价为表示该特殊走道的正整数。
假设,我们可以在蜥蜴出发之前不限次数的使用这个邪恶的法术,所花的总代价即为每次施法代价的总和,蜥蜴出发之后就不能再使用这个法术了,请问让蜥蜴没办法达到终点所必须花费的最小总代价是多少呢?
注意,0所代表的走道是无法变为墙壁的。
输入描述:
输入的第一行有三个正整数Q,N,M。 代表接下来有Q组数据,这Q组数据都是N*M的迷宫。 接下来每组数据各N行,代表一个迷宫,每行各M个整数,第i行中的第j个整数代表迷宫座标(i,j)的格子。
输出描述:
每一组数据输出一行,如果无论如何蜥蜴都能到达终点,请在这一行中输出-1,否则请在这一行中输出一个代表答案的整数。
题解:
过不去的条件:可以从左边界或下边界建一道连续的墙到右边界或上边界。
因为可以斜着走所以墙必须是直接连续,不能是对角线连续(否则依然能过)
这样之后case通过率55%,因为超时。。。
想了一下,可以对出栈顺序进行优化,cost小的先出栈(这样其实是避免了
一些重复计算,因为cost大的先出栈则后面小的会把他覆盖,因此前面的
计算是徒劳的)
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a[505][505],tt[505][505];
int n,m,d[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
struct node
{
int x,y;
ll cost;
};
bool operator<(const node& a,const node& b)
{
return a.cost>b.cost;
}
priority_queue<node>P;
int main()
{
int Q;
scanf("%d%d%d",&Q,&n,&m);
while(Q--)
{
int i,j;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
{
scanf("%lld",&a[i][j]);
if(a[i][j]==-1)a[i][j]=0;//-1就是一道0成本的墙
else if(a[i][j]==0)a[i][j]=-1;//此路不通
//这样赋值方便后面计算
}
for(i=1;i<=n;i++)//出发点依次入栈
{
if(a[i][1]!=-1)
{
node r;r.x=i,r.y=1,r.cost=a[i][1];
P.push(r);
}
}
for(i=2;i<=m;i++)
{
if(a[n][i]!=-1)
{
node r;r.x=n,r.y=i,r.cost=a[n][i];
P.push(r);
}
}
for(i=0;i<=n;i++)
for(j=0;j<=m;j++)
tt[i][j]=1e18;
ll ans=1e18;
while(!P.empty())
{
node r=P.front();P.pop();
if(r.x==1||r.y==m)
{
ans=min(ans,r.cost);
continue;
}
if(r.cost>=tt[r.x][r.y])
continue;//剪枝
tt[r.x][r.y]=r.cost;
for(i=0;i<4;i++)
{
int xx=r.x+d[i][0],yy=r.y+d[i][1];
if(xx<=0||xx>n||yy<=0||yy>m||a[xx][yy]==-1)
continue;
node e;e.x=xx;e.y=yy;e.cost=r.cost+a[xx][yy];
if(e.cost<tt[xx][yy])//剪枝
P.push(e);
}
}
if(ans==1e18)ans=-1;
printf("%lld\n",ans);
}
return 0;
}