链接:
https://www.nowcoder.com/acm/contest/69/A
来源:牛客网
来源:牛客网
题目描述
有一个问题如下:
给你一个有理数v,请找到小于v的最大有理数。
但这个问题的答案对于任意v都是无解的!
因为有理数具有稠密性。这意思是,对于任两个满足u<v的有理数u和v,一定存在一个有理数t满足u<t<v。
所以若你说x是答案,那我们总是能找到另外一个满足x<y<v的有理数y来反驳你。
现在我们不是要问这种只要输出'No Solution'的问题,我们要问一个稍微难一点的问题如下:
给你一个有理数p/q,请找到小于p/q的最大整数。
输入描述:
输入的第一行有一个正整数T,代表询问数。 接下来有T行,每个询问各占1行,包含两个整数p,q,代表这个询问要你找出小于p/q的最大整数。
输出描述:
每个询问请输出一行包含一个整数,代表该询问的答案。
题意:给你x,y,让你求出小于x/y的最大整数。
思路:很明显向下取整,直接库函数floor一下就行了:整除时手动减一,不整除时,一定要先求出double型的x/y,然后再floor(),否则损失精度。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll x,y;
int main()
{
ll t,ans;
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld",&x,&y);
if(x%y==0)ans=(x/y)-1;
else
{
double tmp=(double)x/(double)y; 先求出x/y的精确值
ans=floor(tmp);
}
printf("%lld\n",ans);
}
return 0;
}