由逆序对数引发的解题目录

前言

如果你恰巧看到了我的上一篇总结《排序算法系列之(七)——分分合合的归并排序》会发现我把搁置了3年半的排序系列又续更了,起因是最近刷题时遇到了逆序对数求解,而解这类问题常用的方法之一就是归并排序,究竟是怎样的一道题呢?我们可以先试着解决一下。

逆序对数

题目非常简短,描述内容如下:

在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数。

示例 1:

输入: [7,5,6,4]
输出: 5

限制:

0 <= 数组长度 <= 50000

作者:LeetCode-Solution
链接:https://leetcode.cn/problems/shu-zu-zhong-de-ni-xu-dui-lcof/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

求解过程

题目要求不难理解,即使你不知道什么是逆序对也能很容易的根据描述写出下面暴力的解法:

class Solution {
    int ans = 0;
public:
    int reversePairs(vector<int>& nums) {
        for (int i = 0; i < nums.size(); i++) {
            for (int j = i + 1; j < nums.size(); j++) {
                if (nums[i] > nums[j]) ++ans;
            }
        }
        return ans;
    }
};

不出意外的获得了 TLE,看看限制范围也能猜到这题暴力肯定不让过,如果数组长度小于 100 还可以考虑搏一搏,而这道题必须用更巧妙的方法才行,而归并排序就是解法之一:

class Solution {
    int ans = 0;
public:
    void mergeCnt(vector<int>& v, int left, int right, vector<int>& t) {
        if (left >= right) return;
        int i = left, mid = (left+right) / 2, j = mid + 1, k = 0;

        mergeCnt(v, left, mid, t);
        mergeCnt(v, mid+1, right, t);

        while(i <= mid && j <= right) {
            if (v[i] <= v[j]) t[k++] = v[i++];
            else {
                t[k++] = v[j++];
                ans += mid - i + 1; // 相比归并排序只多了这一行
            }
        }

        while (i <= mid) t[k++] = v[i++];
        while (j <= right) t[k++] = v[j++];

        copy(t.begin(), t.begin() + right - left + 1, v.begin() + left);
    }

    int reversePairs(vector<int>& nums) {
        int n = nums.size();
        vector<int> t(n);
        mergeCnt(nums, 0, n-1, t);
        return ans;
    }
};

相比原始的归并排序只增加了一行代码,就得到了一个优于暴力解法O(N^2)的O(NlogN)的解法,具体解释可以去看相关题解,本文的总结目的不是解一道题,而是想给自己保留一个有趣的解题目录。

解题目录

刷题大计最近两年断断续续的在进行着,题解也有写过一些,尝试过多种方式,内容比较零散,复习时比较头疼,没有一个完整的大纲和复习线路,所以打算单开一篇总结,持续收集一些有意思的题目,方便后续的复习和拿来即用。

题目的标签主要有两个方面,一是本身的题目知识点类型,另一种是解题用到的解法类型,比如上面提到的这道题,从题目看归为逆序对数,从解法看可以归为排序解法和离散化树状数组解法,所以后面可以会看到一个题目出现在多个目录中的情况,只是分类依据不同而已。

题目分类

逆序对数

解法分类

归并排序

离散化树状数组

差分数组

滑动窗口

Trie树

动态规划

…持续补充

总结

  • 有时看似无关的两件事居然关系紧密,比如归并排序加一行代码就可以求解逆序对数
  • 分类、总结、重新分类,在不断分类中重新认识这个世界

==>> 反爬链接,请勿点击,原地爆炸,概不负责!<<==

不积跬步,无以至千里;不积小流,无以成江海。放眼于未来,着眼于脚下,一味计划而不行动,最终醒来只会发现是梦一场~

这道题目还可以使用树状组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状组的实现代码。 解题思路: 1. 读入据; 2. 将原列离散化,得到一个新的列 b; 3. 从右往左依次将 b 列中的元素插入到树状组中,并计算逆序对; 4. 输出逆序对。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原列进行离散化时,需要记录每个元素在原列中的位置,便于后面计算逆序对; - 设树状组的大小为 $n$,则树状组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对时,需要查询离散化后的列中比当前元素小的元素个,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的列的元素从右往左依次插入树状组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AlbertS

常来“玩”啊~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值