pandas 学习 第11篇:DataFrame-数据处理(分组、聚合、窗口、相关、统计)

本文介绍了pandas库在数据处理中的关键操作,包括使用groupby进行数据分组和聚合,利用rolling和expanding进行窗口计算,计算列之间的相关性,以及应用各种统计函数如min、max、mean等进行数据分析。
摘要由CSDN通过智能技术生成

数据处理的目的是为了数据分析,下面分享常用的数据分析中会用到的函数。

一,分组和聚合

 groupby用于对数据分组,分组之后可以直接调用聚合函数求值;agg()函数把分组和调用聚合函数集成到一个函数来实现:

DataFrame.groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, observed=False, **kwargs)
DataFrame.agg(self, func, axis=0, *args, **kwargs)

二,窗口

rolling()是指按照窗口滚动求值,expanding()是指依次递增1,计算累加;ewm指的是指数加权滚动平均:

DataFrame.rolling(self, window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)
DataFrame.expanding(self, min_periods=1, center=False, axis=0)
DataFrame.ewm(self, com=None, span=None, halflife=None, alpha=None, min_periods=0, adjust=True, ignore_na=False
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值