逆序对的数量(递归+归并思想)

给定一个长度为n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i < j 且 a[i] > a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1≤n≤1000001≤n≤100000

输入样例:

6
2 3 4 5 6 1

输出样例:5

解题思路:

第一组: 2   3   4   5

第二组:1   6

归并排序时的两组数据每一组都是已序的,第一组中某个值大于第二组中的某个值,那么第一组这个值后面的所有值都大于这个值

比如第一组中,2<>1为逆序对,那么3<>1,4<>1,5<>1都是逆序对

以此递归解决即可

int merge_sort(int a[], int l, int r) {   
	if (l >= r) return 0;

	int mid = (l + r) >> 1;  //寻找中间点

	int ta = merge_sort(a, l, mid);
	int tb = merge_sort(a, mid + 1, r);

	int k = 0;  //暂存数组的标志
	int i = l, j = mid + 1;  //设置起始地点
	
	int tc = 0;  //当前部分
	//排序部分
	while (i <= mid && j <= r) 
		if (a[i] <= a[j]) temp[k++] = a[i++];
		else {
			temp[k++] = a[j++];
			tc += r - i + 1;
		}
	while(i <= mid)  temp[k++] = a[i++];
	while(j <= r) temp[k++] = a[j++];

	for (int i = l, j = 0; i <= r; i++, j++) a[i] = temp[j];

	return ta + tb + tc;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值