一文让你完全入门EM算法

EM(Expectation Maximum,期望最大化)是一种迭代算法,用于对含有隐变量概率参数模型的极大似然估计或极大后验估计。模型参数的每一次迭代,含有隐变量概率参数模型的似然函数都会增加,当似然函数不再增加或增加的值小于设置的阈值时,迭代结束。

 

EM算法在机器学习和计算机视觉的数据聚类领域有广泛的应用,只要是涉及到后验概率的应用,我们都可以考虑用EM算法去解决问题。EM算法更像是一种数值分析方法,正确理解了EM算法,会增强你机器学习的自学能力,也能让你对机器学习算法有新的认识,本文详细总结了EM算法原理。


目录

1. 只含有观测变量的模型估计

2. 含有观测变量和未观测变量的模型参数估计

3. EM算法流程

4. 抛硬币问题举例

5. 高斯混合模型的参数估计

6. 聚类蕴含的EM算法思想

7. 小结


1. 只含有观测变量的模型估计

我们首先考虑比较简单的情况,即模型只含有观测变量不含有隐藏变量,如何估计模型的参数?我们用逻辑斯蒂回归模型(logistic regression model)来解释这一过程。

假设数据集有d维的特征向量X和相应的目标向量Y,其中640?wx_fmt=png640?wx_fmt=png。下图表示逻辑斯蒂回归模型:

640?wx_fmt=png


由之前的文章介绍,逻辑斯蒂回归模型的目标预测概率是S型函数计算得到,定义为:

640?wx_fmt=png

640?wx_fmt=png,则目标预测变量为1;反之,目标预测变量为0。其中w是待估计的模型参数向量。


机器学习模型的核心问题是如何通过观测变量来构建模型参数w,最大似然方法是使观测数据的概率最大化,下面介绍用最大似然方法(Maximum Likelihood Approach)求解模型参数w


假设数据集640?wx_fmt=png,样本数据640?wx_fmt=png,模型参数640?wx_fmt=png

观测数据的对数似然函数可写为:

640?wx_fmt=png

由对数性质可知,上式等价于:

640?wx_fmt=png

式(1)代入式(2),得:

640?wx_fmt=png

其中:

640?wx_fmt=png

由于(3)式是各个样本的和且模型参数间并无耦合,因此用类似梯度上升的迭代优化算法去求解模型参数w

因为:

640?wx_fmt=png

640?wx_fmt=png

由式(4)(5)(6)可得:

640?wx_fmt=png

因此,模型参数w的更新方程为:

640?wx_fmt=png

其中η是学习率。

根据梯度更新方程(7)迭代参数w,似然函数L(w)逐渐增加,当似然函数收敛时,模型参数w不再更新,这种参数估计方法称为最大似然估计。


2.含有观测变量和因变量的模型参数估计

上节介绍当模型只含有观测变量时,我们用极大似然估计方法计算模型参数w。但是当模型含有隐变量或潜在变量(latent)时,是否可以用极大似然估计方法去估计模型参数,下面我们讨论这一问题:


假设V是观测变量,Z是隐变量,640?wx_fmt=png是模型参数,我们考虑用极大似然估计方法去计算模型参数:

640?wx_fmt=png

由于隐变量在log内部求和,造成不同参数间相互耦合,因此用极大似然方法估计模型参数非常难。(8)式不能估计模型参数的主要原因是隐变量,若隐变量Z已知,完全数据的似然函数为640?wx_fmt=png为了书写方便,观测变量V,Y统一用V表示,即640?wx_fmt=png


那么问题来了,如何通过已观测变量估计隐变量Z的值?这个时候我们想到了后验概率:640?wx_fmt=png


EM算法最大化完全数据在隐变量分布的对数似然函数期望,得到模型参数640?wx_fmt=png,即:

640?wx_fmt=png


现在我们总结EM算法的流程:

1)初始化模型参数640?wx_fmt=png

2)E步估计隐变量的后验概率分布:

640?wx_fmt=png

3)M步估计模型参数640?wx_fmt=png

640?wx_fmt=png

4)当模型参数640?wx_fmt=png或对数似然函数收敛时,迭代结束;反之640?wx_fmt=png,返回第(2)步,继续迭代。


3.EM算法的更深层分析

上节我们介绍了EM算法的模型参数估计过程,相信大家会有个疑问:为什么最大化下式来构建模型参数。


640?wx_fmt=png

下面我给大家解释这一算法的推导过程以及其中蕴含的含义:

假设隐藏变量的理论分布为640?wx_fmt=png,观测数据的对数似然函数可以分解为下式:


640?wx_fmt=png

由贝叶斯理论可知:

640?wx_fmt=png

(9)式得:

640?wx_fmt=png

分子分母除q(Z),得:


640?wx_fmt=png


(10)式第二项表示相对熵,含义为隐变量后验概率分布与理论概率分布的差异,相对熵的一个性质是:

640?wx_fmt=png

根据(10)式我们推断:


640?wx_fmt=png

因此观测数据的对数似然函数的下界为640?wx_fmt=png如果我们能够极大化这个下界,那么同时也极大化了可观测数据的对数似然函数。


当相对熵等于0时,即:

640?wx_fmt=png

由上式得到隐藏变量的后验概率分布与理论分布相等,即:


640?wx_fmt=png

进而(11)式等号成立,即:


640?wx_fmt=png

640?wx_fmt=png取得上界,现在我们需要最大化640?wx_fmt=png的上界,即:


640?wx_fmt=png

当相对熵等于0时,式(12)代入式(13)得到640?wx_fmt=png的上界为:


640?wx_fmt=png

式(15)的第二项对应隐变量的熵,可看成是常数,因此最大化(15)式等价于最大化640?wx_fmt=png,其中:


640?wx_fmt=png


最大化(16)式对应上节介绍EM算法的M步。


是不是对EM算法有了新的认识,本节重新整理算法EM的流程:

1)初始化模型参数为640?wx_fmt=png

2)当等式(12)成立时,640?wx_fmt=png取得上界,最大化640?wx_fmt=png等价于最大化下式:


640?wx_fmt=png

3)最大化640?wx_fmt=png,返回参数640?wx_fmt=png

4)当640?wx_fmt=png收敛时,迭代结束;否则640?wx_fmt=png算法返回到第(2)步继续迭代;


为了大家清晰理解这一算法流程,下面用图形表示EM算法的含义。


E步:模型参数是640?wx_fmt=png时,由(13)式可知640?wx_fmt=png,用黑色实心点标记;

M步:最大化640?wx_fmt=png,返回参数640?wx_fmt=png,用红色实心点标记;

640?wx_fmt=png重复E步和M步,当640?wx_fmt=png收敛时,迭代结束。

640?wx_fmt=png

4.抛硬币问题举例

我们有两种硬币AB,选择硬币A和硬币B的概率分别为π和(1-π),硬币A和硬币B面向上的概率分别为p和q,假设观测变量为640?wx_fmt=png1,0表示正面和反面,i表示硬币抛掷次数;隐变量640?wx_fmt=png1,0表示选择硬币A和硬币B进行抛掷。

问题:硬币共抛掷n次,观测变量已知的情况下求模型参数640?wx_fmt=png的更新表达式。

根据EM算法,完全数据的对数似然函数的期望:

640?wx_fmt=png

其中640?wx_fmt=png表示观测数据640?wx_fmt=png来自掷硬币A的概率,用640?wx_fmt=png表示:

640?wx_fmt=png


最大化640?wx_fmt=png,得到如下更新表达式:


640?wx_fmt=png


现在我们知道了模型参数640?wx_fmt=png的更新方程,假设共抛掷硬币10次,观测结果如下:1,1,0,1,0,0,1,0,1,1。

初始化模型参数为:

640?wx_fmt=png

由式(18)得:

640?wx_fmt=png

利用模型参数更新得:

640?wx_fmt=png

由式(18),得:

640?wx_fmt=png

模型参数继续更新:

640?wx_fmt=png

因此,640?wx_fmt=png收敛时,最终的模型参数为:

640?wx_fmt=png

640?wx_fmt=png表示选择硬币A和硬币B的概率是一样的,如果模型参数的初始值不同,得到的最终模型参数也可能不同,模型参数的初始化和先验经验有关。


5.高斯混合模型的参数估计

一维变量的高斯分布:

640?wx_fmt=png

其中u和640?wx_fmt=png分别表示均值和标准差。

n维变量的高斯分布:

640?wx_fmt=png

其中u是n维均值向量,640?wx_fmt=png是n×n的协方差矩阵。

n维变量的混合高斯分布:

640?wx_fmt=png

该分布共由k个混合成分组成,每个混合成分对应一个高斯分布,其中640?wx_fmt=png640?wx_fmt=png第k个高斯混合成分的均值和协方差。

640?wx_fmt=png是归一化混合系数,含义为选择第k个高斯混合成分的概率,满足以下条件:

640?wx_fmt=png

下图为k=3的高斯混合成分的概率分布图(红色):

640?wx_fmt=png

假设由高斯混合分布生成的观测数据640?wx_fmt=png其对数似然函数:


640?wx_fmt=png

我们用EM算法估计模型参数,其中隐变量对应模型的高斯混合成分,即对于给定的数据x,计算该数据属于第k个高斯混合分布生成的后验概率,记为640?wx_fmt=png


根据贝叶斯定律:

640?wx_fmt=png

最大化式(19),令

640?wx_fmt=png

由式(20)(21)(22)(23)可得模型参数:

640?wx_fmt=png

640?wx_fmt=png

640?wx_fmt=png

下面小结EM算法构建高斯混合模型的流程:

1)初始化高斯混合模型的均值640?wx_fmt=png,协方差640?wx_fmt=png和混合系数640?wx_fmt=png计算完全数据的对数似然值(式(19));

2)E步:使用当前的参数值,通过下式计算均值:

640?wx_fmt=png

640?wx_fmt=png表示观测数据x属于第k个高斯混合成分的后验概率;

3)M步:最大化对数似然函数,得到式(24)(25)(26)的模型更新参数;

4)根据更新的参数值,重新计算完全数据的对数似然函数:

640?wx_fmt=png

若收敛,则得到最终的模型参数值;反之,回到算法第(2)步继续迭代。


6.聚类蕴含的EM算法思想

我们可以把聚类理解为:计算观测数据x属于不同簇类的后验概率,记为640?wx_fmt=png,其中j是簇类个数(j=1,2,...,K),观测数据x所属的簇标记640?wx_fmt=png由如下确定:

640?wx_fmt=png


我们可以用EM算法计算每个样本由不同高斯混合成分生成的后验概率,步骤可参考上一节。


【例】 如下的观测数据,假设簇类个数K=2,初始化每个高斯混合参数得到640?wx_fmt=png,根据式(27)得到聚类结果:

640?wx_fmt=png

根据上一节介绍的EM算法步骤,迭代1次后得到640?wx_fmt=png,根据式(27)得到聚类结果:

640?wx_fmt=png

迭代5次后得到640?wx_fmt=png,根据式(27)得到聚类结果:

640?wx_fmt=png

迭代20次后的640?wx_fmt=png,根据式(27)得到聚类结果:

640?wx_fmt=png

k均值聚类是高斯混合聚类的特例,k均值假设各个维是相互独立的,其算法过程也可用EM思想去理解:

1)初始化簇类中心;

2)E步:通过簇类中心计算每个样本所属簇类的后验概率640?wx_fmt=png

3)M步:最大化当前观测数据的对数似然函数,更新簇类中心

4)当观测数据的对数似然函数不再增加时,迭代结束;反之,返回(2)步继续迭代;


7.小结

EM算法在各领域应用极广,运用了后验概率,极大似然方法和迭代思想构建最优模型参数,后续文章会介绍EM算法在马尔科夫模型的应用,希望通过这篇文章能让读者对EM算法不再陌生。


参考

https://towardsdatascience.com

推荐阅读

k-means聚类算法原理总结

640?wx_fmt=other

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值