em算法详细例子及推导_第九章-EM算法

本文深入探讨EM算法,它是一种用于处理含有隐变量的概率模型的迭代算法。在E步中,计算期望;在M步中,最大化参数。EM算法在高斯混合模型中的应用进行了详细推导,揭示其如何实现对观测数据的极大似然估计。通过理解EM算法的E-M过程,可以更好地掌握非监督学习中的参数估计方法。
摘要由CSDN通过智能技术生成

5f9256eb66db18ad2370ab433c0469b8.png

从第九章开始,学习总结的东西有所不同了,第2-8章是分类问题,都属于监督学习,第9章EM算法是非监督学习。本文主要是总结EM算法的应用以及处理问题的过程和原理推导。

EM算法

EM算法(期望极大算法 Expectation Maximization Algorithm)是一种迭代算法。当我们面对概率模型的时候,既有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,那么给定数据,可以直接使用极大似然估计法或者贝叶斯估计模型估计参数,但是,当模型含有隐变量的时候,就不能简单地这样估计,此时,在1977年,Dempster等人总结提出EM算法:E步:求期望(expectation);M步:求极大值(maximization)

推导过程

上述阐述了EM算法,可是为什么EM算法能近似实现对观测数据的极大似然估计呢?下面通过近似求解观测数据的对数似然函数的极大化问题来导出EM算法,从而了解EM算法的作用。

在推导过程中用到的公式:

EM算法在高斯混合模型学习中的应用

高斯混合模型

推导过程

明确隐变量,写出完全数据的对数似然函数

EM算法的E步,确定Q函数

确定EM算法的M步

EM算法的推广

GEM算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值