从第九章开始,学习总结的东西有所不同了,第2-8章是分类问题,都属于监督学习,第9章EM算法是非监督学习。本文主要是总结EM算法的应用以及处理问题的过程和原理推导。
EM算法
EM算法(期望极大算法 Expectation Maximization Algorithm)是一种迭代算法。当我们面对概率模型的时候,既有观测变量,又含有隐变量或者潜在变量。如果概率模型的变量都是观测变量,那么给定数据,可以直接使用极大似然估计法或者贝叶斯估计模型估计参数,但是,当模型含有隐变量的时候,就不能简单地这样估计,此时,在1977年,Dempster等人总结提出EM算法:E步:求期望(expectation);M步:求极大值(maximization)。
推导过程
上述阐述了EM算法,可是为什么EM算法能近似实现对观测数据的极大似然估计呢?下面通过近似求解观测数据的对数似然函数的极大化问题来导出EM算法,从而了解EM算法的作用。
在推导过程中用到的公式:
EM算法在高斯混合模型学习中的应用
高斯混合模型
推导过程
明确隐变量,写出完全数据的对数似然函数
EM算法的E步,确定Q函数
确定EM算法的M步