最小圆覆盖 随机增量算法

最小圆覆盖。神奇的随机算法。当点以随机的顺序加入时期望复杂度是线性的。

------------------------------------------------------------------------------------

algorithm:

A、令Ci表示为前i个点的最小覆盖圆。当加入新点pi时如果pi不在Ci-1里那么pi必定在Ci的边界上。
B、再从新考虑这样一个问题,Ci为前i个点最小覆盖圆且p在Ci的的边界上!同理加入新点pi时如果p

i不在Ci-1里那么pi必定在Ci的边界上。这时我们就包含了两个点在这个最小圆的边界上。
C、再从新考虑这样一个问题,Ci为前i个点最小覆盖圆且有两个确定点再边界上!此时先让

O(N)的方法能够判定出最小圆。

------------------------------------------------------------------------------------

analysis:

现在来分析为什么是线性的。

C是线性的这是显然的。

B<-C的过程中。考虑pi 他在园内的概率为 (i-1)/i 。在圆外的概率为 1/i 所以加入pi的期望复杂度为:(1-i)/i*O(1) +(1/i)*O(i) {前者在园内那么不进入C,只用了O(1)。后者进入C用了O(i)的时间}这样分析出来,复杂度实际上仍旧

是线性的。

A<-B的过程中。考虑方法相同,这样A<-B仍旧是线性。于是难以置信的最小圆覆盖的复杂度变成了线性的。
-------------------------------------------------------------------------------------

下面的程序没有先将点随机化,因为数据通常也是随机的= =!

1
2 #include < iostream >
3 #include < cstdio >
4 #include < cmath >
5   using namespace std;
6 struct node{
7 double x,y;
8 };
9 int n;
10 node p[ 200000 ];
11 double r;
12 node O;
13 double dist(node a,node b)
14 {
15 return sqrt( (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y) );
16 }
17 void calc( double a, double b, double c, double d, double e, double f) // 给出两条直线ax+by+c=0,dx+ey+f=0 求交点
18 { // 注意到三角形里两条中垂线不可能平行,所以不会产生除0错误
19 O.y = (c * d - f * a) / (b * d - e * a);
20 O.x = (c * e - f * b) / (a * e - b * d);
21 }
22 int main()
23 {
24 freopen( " HYOJ1337.in " , " r " ,stdin);
25 freopen( " HYOJ1337.out " , " w " ,stdout);
26 scanf( " %d " , & n);
27 for ( int i = 1 ;i <= n; ++ i) scanf( " %lf%lf " , & p[i].x, & p[i].y);
28 O = p[ 1 ];r = 0 ; // 初始C1
29
30 for ( int i = 2 ;i <= n; ++ i) // A
31 if (dist(O,p[i]) > r + 1e - 6 )
32 {
33 O = p[i];r = 0 ;
34 for ( int j = 1 ;j <= i - 1 ; ++ j) // B
35 if (dist(O,p[j]) > r + 1e - 6 )
36 {
37 O.x = (p[i].x + p[j].x) / 2 ;O.y = (p[i].y + p[j].y) / 2 ;r = dist(O,p[j]);
38 for ( int k = 1 ;k <= j - 1 ; ++ k) // C
39 if (dist(O,p[k]) > r + 1e - 6 )
40 {
41 calc(p[j].x - p[i].x,p[j].y - p[i].y,(p[j].x * p[j].x + p[j].y * p[j].y - p[i].x * p[i].x - p[i].y * p[i].y) / 2 ,
42 p[k].x - p[i].x,p[k].y - p[i].y,(p[k].x * p[k].x + p[k].y * p[k].y - p[i].x * p[i].x - p[i].y * p[i].y) / 2 );
43 r = dist(O,p[k]);
44 }
45 }
46 }
47 printf( " %.3lf\n " ,r);
48 return 0 ;
49 }
50

转载于:https://www.cnblogs.com/LitIce/archive/2010/11/11/1875149.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
最小覆盖问题是一个经典的几何优化问题,其求解模型可以通过以下几种方法来实现: 1. Welzl算法:Welzl算法是一种递归的随机增量算法,用于寻找最小覆盖。该算法的基本思想是通过随机选择点,逐步构建包含这些点的最小。具体步骤包括:如果点集为空,则返回空;如果只有一个点,则返回以该点为心、半径为0的;如果有两个点,则返回以这两个点为直径的;对于多于两个点的情况,随机选择一个点,递归构建包含其余点的最小,并检查是否需要更新最小。该算法的时间复杂度为O(n)。 2. Graham扫描算法:Graham扫描算法是一种基于极角排序的凸包算法,也可以用于解决最小覆盖问题。该算法首先选取一个点作为起始点,并按照与起始点的极角大小进行排序。然后维护一个栈,依次将点入栈,并检查是否需要进行凸包的调整。最后,使用Welzl算法对凸包上的点进行最小覆盖的求解。该算法的时间复杂度为O(nlogn)。 3. 随机增量算法随机增量算法是一种启发式算法,通过随机增加点来逼近最小覆盖。该算法的基本步骤包括:选取初始,并将点集分为内点和外点;在外点中随机选择一个点,将其添加到内,更新最小;重复上述步骤,直到所有点都被添加到内。该算法的时间复杂度与点的数量有关。 以上是常见的几种模型用于解决最小覆盖问题。具体选择哪种模型取决于问题规模、时间限制和精度要求等因素。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值