PCA降维——主成分分析(principal component analysis,PCA)与LDA(线性判别分析)

LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的。这点和PCA不同。PCA是不考虑样本类别输出的无监督降维技术。LDA的思想可以用一句话概括,就是“投影后类内方差最小,类间方差最大”。什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。

LDA

摘要:

     主成分分析(principal component analysis,PCA)是一种将高维数据投影到低维

数据的线性变换方法,这一方法的目的是寻找在最小均方误差意义下最能代表原始数据

特征的投影方向,用这些方向矢量表示数据。本实验的目的是了解PCA主分量分析方法

的基本概念,学习和掌握PCA主分量分析方法的基本概念,学习和掌握PCA主分量分析

方法。利用PCA分析对数据集合进行特征空间的规整化;利用PCA分析对数据集合进行

特征空间降维分析。


协方差矩阵讲解,点击打开链接

标准差和方差一般是用来描述一维数据的;对于多维情况,而协方差是用于描述任意两维数据之间的关系,一般用协方差矩阵来表示。因此协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的



  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
线性判别分析(Linear Discriminant AnalysisLDA)和主成分分析Principal Component AnalysisPCA)都是常用的降维技术,但它们的目的和应用场景不同。 LDA 是一种监督学习的降维方法,它的目的是将数据映射到一个新的低维空间,使得不同类别的数据在新的空间中尽可能分开,同一类别的数据尽可能靠近。LDA 常用于分类问题,可以将高维数据降维到更低维的子空间,从而提高分类的性能。 PCA 是一种无监督学习的降维方法,它的目的是将数据映射到一个新的低维空间,使得数据在新的空间中的方差尽可能大。PCA 常用于数据压缩和可视化,可以在不损失太多信息的情况下将数据降维到更低的维度,从而提高计算效率和可视化效果。 总结来说,LDAPCA 的区别主要在于: 1. 目的不同:LDA 是一种监督学习的降维方法,用于分类问题;PCA 是一种无监督学习的降维方法,用于数据压缩和可视化。 2. 应用场景不同:LDA 适用于有标签的数据集,PCA 适用于无标签的数据集。 3. 映射方式不同:LDA 通过确定投影向量来将数据映射到新的子空间,PCA 通过计算主成分来将数据映射到新的子空间。 4. 优化目标不同:LDA 优化类间距离和类内距离之间的比率,PCA 优化数据在新的子空间中的方差。 因此,在实际应用中,需要根据具体的问题和数据特点来选择合适的降维方法。如果数据集有标签,且需要进行分类,可以使用 LDA;如果需要进行数据压缩和可视化,或者数据集无标签,可以使用 PCA

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值