机器学习-降维方法-无监督:PCA算法(主成分/主元分析)【计算协方差矩阵X^TX的特征值与特征向量W(特征向量W控制旋转、特征值控制尺度)->特征向量W作为投影矩阵->将样本X通过W投影进行降维】

PCA(主成分分析)是一种无监督的线性降维方法,通过正交变换减少数据的维度,同时最大化方差以保持信息。PCA通过计算协方差矩阵和特征值来找到新变量(主成分),这些主成分是原始变量的线性组合,彼此正交。降维过程中,PCA可避免特征之间的线性相关性,常用于数据预处理和降低模型复杂度。
摘要由CSDN通过智能技术生成

无监督学习 { 化繁为简 { 聚类(Clustering)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值