无监督学习 { 化繁为简 { 聚类(Clustering)
机器学习-降维方法-无监督:PCA算法(主成分/主元分析)【计算协方差矩阵X^TX的特征值与特征向量W(特征向量W控制旋转、特征值控制尺度)->特征向量W作为投影矩阵->将样本X通过W投影进行降维】
于 2021-01-14 00:16:39 首次发布
PCA(主成分分析)是一种无监督的线性降维方法,通过正交变换减少数据的维度,同时最大化方差以保持信息。PCA通过计算协方差矩阵和特征值来找到新变量(主成分),这些主成分是原始变量的线性组合,彼此正交。降维过程中,PCA可避免特征之间的线性相关性,常用于数据预处理和降低模型复杂度。
摘要由CSDN通过智能技术生成