Sharding-JDBC之ComplexKeysShardingAlgorithm(复合分片算法)

一、简介

  实际工作中,按时间分片的比较多,但是也有些特殊的分片,不只是用到一个字段,可能会多个字段,这个时候就要用到复合分片算法来实现了 ComplexKeysShardingAlgorithm

  我也是偷懒,不想设计其他的表了,就用以前的表结构来完成,我们就以用户id和金额分表。本文示例大概架构如下图:
在这里插入图片描述
例子没很大的实用性,你可以扩展为一个平台很多商户,同一个商户的交易按月分表,也是没问题的,但是我们学习的是思路。

二、maven依赖

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.6.0</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.alian</groupId>
    <artifactId>sharding-jdbc</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>sharding-jdbc</name>
    <description>sharding-jdbc</description>

    <properties>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-jpa</artifactId>
        </dependency>

        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
            <version>4.1.1</version>
        </dependency>

        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>druid</artifactId>
            <version>1.2.15</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.26</version>
            <scope>runtime</scope>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.20</version>
        </dependency>

        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
            <scope>test</scope>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>

</project>

  有些小伙伴的 druid 可能用的是 druid-spring-boot-starter

<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid-spring-boot-starter</artifactId>
    <version>1.2.6</version>
</dependency>

  然后出现可能使用不了的各种问题,这个时候你只需要在主类上添加 @SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class}) 即可

package com.alian.shardingjdbc;

import com.alibaba.druid.spring.boot.autoconfigure.DruidDataSourceAutoConfigure;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication(exclude = {DruidDataSourceAutoConfigure.class})
@SpringBootApplication
public class ShardingJdbcApplication {

    public static void main(String[] args) {
        SpringApplication.run(ShardingJdbcApplication.class, args);
    }

}

三、数据库

3.1、创建数据库

CREATE DATABASE `sharding_12` DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci;

3.2、创建表

  在数据库sharding_12创建表:tb_order_00tb_order_01tb_order_02,三者的结构是一样的:

CREATE TABLE `tb_order_00` (
  `order_id` bigint(20) NOT NULL COMMENT '主键',
  `user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
  `order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
  `order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `title` varchar(100)  NOT NULL DEFAULT '' COMMENT '订单标题',
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`),
  KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';

CREATE TABLE `tb_order_01` (
  `order_id` bigint(20) NOT NULL COMMENT '主键',
  `user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
  `order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
  `order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `title` varchar(100)  NOT NULL DEFAULT '' COMMENT '订单标题',
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`),
  KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';

CREATE TABLE `tb_order_02` (
  `order_id` bigint(20) NOT NULL COMMENT '主键',
  `user_id` int unsigned NOT NULL DEFAULT '0' COMMENT '用户id',
  `price` int unsigned NOT NULL DEFAULT '0' COMMENT '价格(单位:分)',
  `order_status` tinyint unsigned NOT NULL DEFAULT '1' COMMENT '订单状态(1:待付款,2:已付款,3:已取消)',
  `order_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `title` varchar(100)  NOT NULL DEFAULT '' COMMENT '订单标题',
  PRIMARY KEY (`order_id`),
  KEY `idx_user_id` (`user_id`),
  KEY `idx_order_time` (`order_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='订单表';

为了说明 ComplexKeysShardingAlgorithm 算法,我假设有个这样的需求(实际中应该不会有,这里只是演示),生成的订单规则如下:

  • userId和price一个奇数一个偶数 tb_order_00
  • userId和price都是奇数的订单都存到 tb_order_01
  • userId和price都是偶数的订单都存到 tb_order_02

很明显,这样分表的字段就是多个了,userId和price,那我们看怎么实现的

四、配置(二选一)

4.1、properties配置

application.properties

server.port=8899
server.servlet.context-path=/sharding-jdbc

# 允许定义相同的bean对象去覆盖原有的
spring.main.allow-bean-definition-overriding=true
# 数据源名称,多数据源以逗号分隔
spring.shardingsphere.datasource.names=ds1
# sharding_1数据库连接池类名称
spring.shardingsphere.datasource.ds1.type=com.alibaba.druid.pool.DruidDataSource
# sharding_1数据库驱动类名
spring.shardingsphere.datasource.ds1.driver-class-name=com.mysql.cj.jdbc.Driver
# sharding_1数据库url连接
spring.shardingsphere.datasource.ds1.url=jdbc:mysql://192.168.0.129:3306/sharding_12?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5
# sharding_1数据库用户名
spring.shardingsphere.datasource.ds1.username=alian
# sharding_1数据库密码
spring.shardingsphere.datasource.ds1.password=123456

# 指定库分片策略
spring.shardingsphere.sharding.default-data-source-name=ds1
# 指定tb_order表的数据分布情况,配置数据节点,使用Groovy的表达式
spring.shardingsphere.sharding.tables.tb_order.actual-data-nodes=ds1.tb_order_0$->{0..2}

# 采用标准分片策略:ComplexKeysShardingAlgorithm
# 指定tb_order表的分片策略中的分片键
spring.shardingsphere.sharding.tables.tb_order.table-strategy.complex.sharding-columns=user_id,price
# 指定tb_order表的分片策略中的分片算法全类路径的名称
spring.shardingsphere.sharding.tables.tb_order.table-strategy.complex.algorithm-class-name=com.alian.shardingjdbc.algorithm.OrderComplexShardingAlgorithm

# 指定tb_order表的主键为order_id
spring.shardingsphere.sharding.tables.tb_order.key-generator.column=order_id
# 指定tb_order表的主键生成策略为SNOWFLAKE
spring.shardingsphere.sharding.tables.tb_order.key-generator.type=SNOWFLAKE
# 指定雪花算法的worker.id
spring.shardingsphere.sharding.tables.tb_order.key-generator.props.worker.id=100
# 指定雪花算法的max.tolerate.time.difference.milliseconds
spring.shardingsphere.sharding.tables.tb_order.key-generator.props.max.tolerate.time.difference.milliseconds=20

# 打开sql输出日志
spring.shardingsphere.props.sql.show=true

4.2、yml配置

application.yml

server:
  port: 8899
  servlet:
    context-path: /sharding-jdbc

spring:
  main:
    # 允许定义相同的bean对象去覆盖原有的
    allow-bean-definition-overriding: true
  shardingsphere:
    props:
      sql:
       # 打开sql输出日志
       show: true
    datasource:
      # 数据源名称,多数据源以逗号分隔
      names: ds1
      ds1:
        # 数据库连接池类名称
        type: com.alibaba.druid.pool.DruidDataSource
        # 数据库驱动类名
        driver-class-name: com.mysql.cj.jdbc.Driver
        # 数据库url连接
        url: jdbc:mysql://192.168.0.129:3306/sharding_12?serverTimezone=GMT%2B8&characterEncoding=utf8&useUnicode=true&useSSL=false&zeroDateTimeBehavior=CONVERT_TO_NULL&autoReconnect=true&allowMultiQueries=true&failOverReadOnly=false&connectTimeout=6000&maxReconnects=5
        # 数据库用户名
        username: alian
        # 数据库密码
        password: 123456
    sharding:
      # 未配置分片规则的表将通过默认数据源定位
      default-data-source-name: ds1
      tables:
        tb_order:
          # 由数据源名 + 表名组成,以小数点分隔。多个表以逗号分隔,支持inline表达式
          actual-data-nodes: ds1.tb_order_0$->{0..2}
          # 分表策略
          table-strategy:
            complex:
              # 分片键
              sharding-columns: user_id,price
              # 复合分片算法
              algorithm-class-name: com.alian.shardingjdbc.algorithm.OrderComplexShardingAlgorithm
          # key生成器
          key-generator:
            # 自增列名称,缺省表示不使用自增主键生成器
            column: order_id
            # 自增列值生成器类型,缺省表示使用默认自增列值生成器(SNOWFLAKE/UUID)
            type: SNOWFLAKE
            # SnowflakeShardingKeyGenerator
            props:
              # SNOWFLAKE算法的worker.id
              worker:
                id: 100
              # SNOWFLAKE算法的max.tolerate.time.difference.milliseconds
              max:
                tolerate:
                  time:
                    difference:
                      milliseconds: 20

  • actual-data-nodes 使用Groovy的表达式 就是表示上面创建的表
  • 通过复合分片策略完成分表,分片键是: user_id price
  • table-strategy 采用的是 复合分片策略 ,算法实现类是我们自定义的类 com.alian.shardingjdbc.algorithm.OrderComplexShardingAlgorithm
  • key-generator :key生成器,需要指定字段和类型,比如这里如果是SNOWFLAKE,最好也配置下props中的两个属性: worker.id max.tolerate.time.difference.milliseconds 属性

五、复合分片算法

  具体的算法实现如下:

OrderComplexShardingAlgorithm.java

package com.alian.shardingjdbc.algorithm;

import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.api.sharding.complex.ComplexKeysShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.complex.ComplexKeysShardingValue;

import java.time.format.DateTimeFormatter;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Map;

@Slf4j
public class OrderComplexShardingAlgorithm implements ComplexKeysShardingAlgorithm<Integer> {

    private static final DateTimeFormatter FORMATTER = DateTimeFormatter.ofPattern("yyyyMM");

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, ComplexKeysShardingValue<Integer> shardingValue) {
        Collection<String> result = new ArrayList<>();

        Map<String, Collection<Integer>> shardingValuesMap = shardingValue.getColumnNameAndShardingValuesMap();

        Collection<Integer> userIds = shardingValuesMap.get("user_id");
        Collection<Integer> prices = shardingValuesMap.get("price");
        for (Integer userId : userIds) {
            for (Integer price : prices) {
                String suffix;
                if (userId % 2 == 1 && price % 2 == 1) {
                    // 奇数
                    suffix = "01";
                } else if (userId % 2 == 0 && price % 2 == 0) {
                    // 偶数
                    suffix = "02";
                } else {
                    // 1奇数1偶数
                    suffix = "00";
                }
                for (String targetName : availableTargetNames) {
                    if (targetName.endsWith("_" + suffix)) { // 按照分片值选择目标表
                        result.add(targetName);
                    }
                }
            }
        }
        return result;
    }

}

  我们是按照订单时间进行分表的,实际使用也很简单,插入数据时实现接口 OrderComplexShardingAlgorithm <Integer> 。然后重写方法 doSharding ,这个方法会有两个参数,第一个就是物理表的集合,第二个是分片对象。但是有人就会说,你这里正好两个字段都是同一个类型,而我们实际中,可能是多种类型,比如String、Long、Integer、Date等,按照这个写法,不是这个类型的就取不到值了,如果你是你说的这种情况,你就把上面的代码改造下,把类型改成 <Comparable<?>> ,然后就自己转类型,别说你自己都不知道类型,具体见下面代码。

package com.alian.shardingjdbc.algorithm;

import lombok.extern.slf4j.Slf4j;
import org.apache.shardingsphere.api.sharding.complex.ComplexKeysShardingAlgorithm;
import org.apache.shardingsphere.api.sharding.complex.ComplexKeysShardingValue;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Map;

@Slf4j
public class ComparableOrderComplexShardingAlgorithm implements ComplexKeysShardingAlgorithm<Comparable<?>> {

    @Override
    public Collection<String> doSharding(Collection<String> availableTargetNames, ComplexKeysShardingValue<Comparable<?>> shardingValue) {
        Collection<String> result = new ArrayList<>();

        Map<String, Collection<Comparable<?>>> shardingValuesMap = shardingValue.getColumnNameAndShardingValuesMap();

        Collection<?> userIds = shardingValuesMap.get("user_id");
        Collection<?> prices = shardingValuesMap.get("price");
//        Collection<?> orderTimes = shardingValuesMap.get("order_time");
        for (Object userIdObj : userIds) {
            for (Object priceObj : prices) {
                String suffix;
                int userId = Integer.parseInt(userIdObj + "");
                int price = Integer.parseInt(priceObj + "");
                if (userId % 2 == 1 && price % 2 == 1) {
                    // 奇数
                    suffix = "01";
                } else if (userId % 2 == 0 && price % 2 == 0) {
                    // 偶数
                    suffix = "02";
                } else {
                    // 1奇数1偶数
                    suffix = "00";
                }
                for (String targetName : availableTargetNames) {
                    if (targetName.endsWith("_" + suffix)) { // 按照分片值选择目标表
                        result.add(targetName);
                    }
                }
            }
        }
        return result;
    }

}

六、实现

6.1、实体层

Order.java

@Data
@Entity
@Table(name = "tb_order")
public class Order implements Serializable {

    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    @Column(name = "order_id")
    private Long orderId;

    @Column(name = "user_id")
    private Integer userId;

    @Column(name = "price")
    private Integer price;

    @Column(name = "order_status")
    private Integer orderStatus;

    @Column(name = "title")
    private String title;

    @JsonFormat(pattern = "yyyy-MM-dd HH:mm:ss")
    @Column(name = "order_time")
    private LocalDateTime orderTime;

}

6.2、持久层

OrderRepository.java

public interface OrderRepository extends PagingAndSortingRepository<Order, Long> {

    /**
     * 根据userId和金额查询订单
     *
     * @param userId
     * @param price
     * @return
     */
    List<Order> findByUserIdAndPrice(int userId, int price);
}

6.3、服务层

OrderService.java

@Slf4j
@Service
public class OrderService {

    @Autowired
    private OrderRepository orderRepository;

    public void saveOrder(Order order) {
        orderRepository.save(order);
    }


    public List<Order> findByUserIdAndPrice(int userId, int price) {
        return orderRepository.findByUserIdAndPrice(userId, price);
    }
}

6.4、测试类

OrderTests.java

@Slf4j
@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest
public class OrderTests {

    @Autowired
    private OrderService orderService;

    @Test
    public void saveOrder() {

        // 创建20条订单记录
        for (int i = 0; i < 20; i++) {
            Order order = new Order();
//            order.setOrderId(System.currentTimeMillis());
            // 随机生成1000到1009的用户id
            int userId = (int) Math.round(Math.random() * (1009 - 1000) + 1000);
            order.setUserId(userId);
            // 随机生成50到100的金额
            int price = (int) Math.round(Math.random() * (10000 - 5000) + 5000);
            order.setPrice(price);
            order.setOrderStatus(2);
            order.setOrderTime(LocalDateTime.now());
            order.setTitle("");
            orderService.saveOrder(order);
        }
    }

    @Test
    public void queryOrder() {
        List<Order> order = orderService.findByUserIdAndPrice(1002,9860);
        log.info("查询的结果:{}", order);
    }

}

我们插入数据时,采用随机时间插入,具体时间生成见测试类。

效果图:

在这里插入图片描述
  从上面的数据来看,满足我们分库分表的要求的,实现都是基于我们自定义的算法实现。

6.4.2、根据时间范围查询订单
13:09:39 403 INFO [main]:Actual SQL: ds1 ::: select order0_.order_id as order_id1_0_, order0_.order_status as order_st2_0_, order0_.order_time as order_ti3_0_, order0_.price as price4_0_, order0_.title as title5_0_, order0_.user_id as user_id6_0_ from tb_order_02 order0_ where order0_.user_id=? and order0_.price=? ::: [1002, 9860]
13:09:39 463 INFO [main]:查询的结果:[Order(orderId=940934509405552641, userId=1002, price=9860, orderStatus=2, title=, orderTime=2023-12-11T11:37:49)]

通过语句查询:

(SELECT *,'tb_order_00' FROM sharding_12.tb_order_00
where user_id=1002  and price=9860)
union all
(SELECT *,'tb_order_01' FROM sharding_12.tb_order_01
where user_id=1002  and price=9860)
union all
(SELECT *,'tb_order_02' FROM sharding_12.tb_order_02
where user_id=1002  and price=9860)

数据库校验:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值