AI人脸识别的测试重点

本文聚焦于AI人脸识别的测试,涵盖人脸采集、特征提取、人脸比对及活体检测等方面。测试人员需关注异常场景,如光线、遮挡、肤色差异等,同时理解阈值设定对通过率和误报率的影响,以确保在实际应用中的准确性与安全性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前的文章重点分享了AI的概念和应用,以及AI的架构与核心,结合到项目里,最常见的 AI应用就是人脸识别,因此这篇文章从人脸识别的架构和核心上,来讲讲测试的重点。

测试之前需要先了解人脸识别的整个流程,上一篇文章分享过,红色标识代表的是对应AI架构中的各个阶段

AI 的架构与核心_简言-CSDN博客_ai架构

首先是人脸采集。

安装拍照摄像设备之后,需要在动态的场景与复杂的背景中判断是否存在人脸,并分离出这种面像。然后采集到人脸的照片。

因此采集过程是非常重要的,一需要能够采集到内容,二采集的内容能够分离出来是人脸。

而特征提取的原理是,将获取的人脸照片进行色彩矫正、光线调整,五官定位和脸部分割,将人脸的鼻子、眼睛、嘴巴等视为一个个特征点,计算每个特征点所在的位置、距离、角度。

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值