Deep GSP : 面向多目标优化的工业界广告智能拍卖机制

目录:

   · 背景

   · 问题定义

    ·  Deep GSP

   · 实验

   · 与现有学术界和工业界类似方案的差异

   · 展望

   · 关于我们

   · 参考文献

▐ 背景

广告拍卖机制是对竞争性资源的一种高效的市场化分配方式。电商广告中的拍卖机制设计(Mechanism Design in Online E-commerce Advertising),旨在从平台视角出发制定拍卖策略,通过“流量分配” 和“扣费”两个抓⼿,引导广告主有序竞争,并使得流量博弈趋向优化广告主、平台、媒体多方利益。

信息流广告全面进入重用户体验的时代,广告分配机制也需要兼顾广告主诉求用户体验广告消耗等多个目标的影响,平台机制不仅需要对收入负责,还需要对整个竞价系统的长期健康稳定负责。这一问题不同于经典的多目标优化问题或拍卖机制问题的研究:

  • 动态博弈环境下的目标优化。在线电商广告系统中,不同利益方之间的优化诉求可能存在冲突(例如平台收入和用户体验),且不同利益方均具有理性心智,在一个博弈环境下进行动态交互,这不同于传统的静态多目标优化问题。

  • 面向多目标的拍卖机制设计。传统的机制设计方法往往只考虑优化平台的收入或社会福利(social welfare,平台收入和广告主的预期收益),极少同时考虑其他多个指标(例如点击、转化、收藏加购、客户体验等指标)。

因此我们需要考虑在多利益方的动态博弈场景下建模并优化多个目标。

▐ 问题定义

我们定义电商广告场景下,多利益方(广告主、用户、平台)博弈背景下的多诉求指标优化问题(Multiple Stakeholders' Ad Performance Objectives Optimization in the Competitive E-commerce Advertising):

402 Payment Required

其中表示要优化的机制(即分配和扣费规则);代表各利益方的诉求指标集合,如:平台收入、点击、转化、收藏加购、成交量等等,所有诉求指标通过预先给定的重要性权重求得聚合目标函数。同时,在优化过程中需要满足两个关于机制属性的约束:

  • 博弈均衡约束(Game Equilibriium Contraints):所有广告主(竞价者)在当前机制下能够达到博弈均衡状态,在当前状态下广告主对分配结果感到满意(即分配结果的改变不能使广告主的收益变多)。在算法博弈论(Algorithmic Game Theory)领域,有一些和拍卖机制相关的博弈均衡概念。例如经典的Myerson定理证明了:如果一个机制在单坑拍卖场景中是单调分配(Monotone Allocation),且扣费为保持当前分配下的最小出价(critical bid based pricing),那么这个机制是激励兼容(Incentive-Compatible, IC)[1] 的:

THEOREM 1 (Single Slot Incencentive-Compatible)[1]. A single slot auction mechanism is  incentive-compatible if and only if the allocation scheme is monotone, i.e., the winning bidder would still win the auction if she reports a higher bid, and the pricing rule is based on the critical bid, which is the minimum bid that the winning bidder needs to report to maintain the winning state:

402 Payment Req

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值