NAACL22 & SIGIR22 | 面向 CTR 的外投广告动态创意优化实践

本文分享阿里妈妈外投广告UD效果&用增算法团队在动态创意优化方向上关于文案生成和创意元素组合这两方面的实践,在多次大促投放活动上取得线上收益。基于该项工作总结的两篇学术文章已被 NAACL 2022 (Industry Track Oral) 和 SIGIR 2022 录用,欢迎阅读交流~

NAACL 2022 | CREATER: CTR-driven Advertising Text Generation with Controlled Pre-Training and Contrastive Fine-Tuning

下载:https://arxiv.org/abs/2205.08943

SIGIR 2022 | Towards Personalized Bundle Creative Generation with Contrastive Non-Autoregressive Decoding

下载:https://arxiv.org/abs/2205.14970

背景

广告主通过阿里妈妈外投广告平台进行广告投放时,创意决定了呈现在用户面前的内容,因此对创意的优化会直接作用于投放效率和用户体验。外投广告场景下,创意优化主要关注两个目标:第一个目标是提升广告主/运营生产创意的效率;第二个目标则是利用投放反馈数据优化创意生成模型以提升业务效果。围绕第一个目标的工作我们称为程序化创意(Programmatic Creative Platform,PCP),旨在实现海量的创意(不同视觉、尺寸、样式、文案等)批量生产和管理,并与投放引擎结合对目标用户完成便捷精准的投放。围绕第二个目标的工作我们称为动态创意优化(Dynamic Creative Optimization,DCO),旨在基于外投广告反馈数据来调整创意的素材如标题、文案、图片、视频等,并寻找效果最优的创意元素组合。本篇文章我们主要分享我们在持续迭代 DCO 的过程中总结的文案生成和创意元素组合的相关优化方法。

如下左图所示为用户在不同媒体上看到的开屏、信息流创意完整视图。实际上每个创意都是由多种创意元素组合而成,如下右图。

6cf1555f292b6c16592fa3d8c34a0617.png

为了深入优化创意,我们基于投放反馈数据,从创意元素的生成和组合这两个方面去探索提升广告效果的方法,沉淀了一些动态创意优化技术,主要包括:

  • 面向低资源的文案生成模型 CREATER,设计定制化的自监督预训练目标缓解成对数据不足的问题,并显式引入属性词和 CTR 反馈数据,分别控制生成质量和生成效果,为信息流创意标题提供丰富的候选文案。

  • 基于非自回归解码的多品组合创意生成模型 CONNA,以创意的异质候选元素集合作为输入,通过对比学习和非自回归式解码来提升创意元素的组合效果和效率,并在多次大促投放得到了效果检验。

下面我们对上述优化方案分别展开介绍。

NAACL 2022 | 文案生成模型 CREATER 

1. 引言

许多广告场景的实践都证实了创意文案的优化可以带来业务效果的增长。头部广告主经过多年投放经验的积累,他们提供的创意文案通常具有很高的质量,但由于用户兴趣的变化等因素,不可避免依然存在创意千人一面的问题,文案缺乏动态特性、无法满足不同用户的个性需求而降低了用户体验。而中小广告主在创意优化上的资源和经验都相对不足,更需要平台助力。

按照我们过往经验,创意文案的优化往往需要面对以下几个问题。首先是文案生产的来源问题:广告所挂载的商品的标题文本、结构化属性信息等都可以作为文案生成模型的输入,但由于 SEO 的普遍存在,商家所撰写的标题通常是一些属性词的无序堆砌,我们则希望生成的文案可以较好地反映用户体验相关的信息来提升信息量。其次是模型目标与业务目标不一致的问题:NLG 模型通常基于 token-level 交叉熵目标来优化,而我们在优化创意文案时的主要诉求则是其能够帮助提升广告 CTR。最后也是最关键的是低资源问题:基于 seq2seq 的 NLG 模型通常基于海量成对数据训练,然而人工撰写海量的高质量广告文案是有较大代价的,因此我们不可避免地会遇到成对数据量不足的低资源问题。

针对以上问题,我们提出了面向 CTR 的文案生成模型 CREATER (CTR-driven advertising text generation)。在文案生产来源方面,我们选择高质量的用户评论作为模型输入,因为相比标题而言,第三方视角撰写的评论更体现出用户在购买之后的实际体验;同时,为了保障文案的信息量,我们引入属性词作为 control code 来干预生成过程,避免模型只生成空洞但华而不实的辞藻的情况。其次,为了显式引入 CTR 目标到生成模型中,我们充分利用在线 A/B 过程中所收集的带用户反馈的文案数据(同一广告会配置两条不同的文案用于在线 A/B),基于每条文案的 CTR 差异,通过对比学习目标来鼓励模型生成高 CTR 的文案。最后,为了应对低资源问题,我们利用大量的用户评论数据,针对下游任务设计了一个定制化的自监督预训练目标,尽可能缩小了预训练与下游任务的 gap 并为模型提供热启动。大量的离线实验证实了 CREATER 模型的效果。我们也将 CREATER 模型生成的文案用于在线投放中,相比运营配置文案和此前 SOTA 模型生成的文案,CREATER 模型在 CTR、CPC 等在线指标上都取得了明显的提升。

2. 方法

对于一条广告,给定一个评论文本 作为 source、以及一个属性词 (aspect term) 作为 control code 来引导生成过程,我们希望学习一个文案生成模型 来生成一个高质量的广告文案 作为 target,其能够尽可能地贴合用户兴趣、提升 CTR。我们前期对用户评论语料做了许多清洗工作(例如 IDF 过滤等),保证进入模型训练的语料的 clean 程度。属性词集合可由现成的 aspect extraction 或 aspect term extraction 方法得到,我们离线试验下来发现不同方法得到的属性词集合对于模型最终的生成效果(ROUGE/BLEU)影响不大。图 1 给出了 CREATER 模型的整体流程,分为两个阶段:

  • 阶段一:Controlled Pretraining。在大规模用户评论语料上基于定制化的、与下游任务 gap 小的自监督学习目标进行预训练,为模型提供热启动。

  • 阶段二:Contrastive Finetuning。利用在线 A/B 过程中所收集的带用户反馈的文案数据,令模型训练过程中能够感知到高/低 CTR 文案,通过对比式 loss 鼓励模型生成高 CTR 内容。

fa21f33b845666097423ecdb75e82d68.png
图 1:CREATER 模型总览。整体上分为两个阶段,Controlled Pretraining 以及 Contrastive Finetuning
2.1 阶段一:Controlled Pretraining

理想状况下,我们可以收集大量的成对数据 ,通过监督学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值