智能商业化模式:信息流广告的动态展现策略

针对信息流广告动态展现问题,本文提出HCA2E方法,通过分层约束优化平台多目标,保障拍卖机制性质,提高计算效率及效果稳定性。实验证明,HCA2E显著优于现有方法。

目录:

· 摘要

· 引言

· 问题建模

· 实验

· 总结与展望

· 关于我们

· 参考文献

▐ 摘要

大多数的信息流场景会向用户展现自然内容和商业化内容(广告)的混合结果。一种比较常见的做法是,将广告限定在固定位置进行展现,但由于这种静态广告展现策略忽略了用户的个性化偏好,往往比较低效。因此,在本文中我们聚焦于信息流广告的动态展现方法研究,从动态背包问题的角度将其建模,并提出了分层约束下的动态广告展现方法(Hierarchically Constrained Adaptive Ad Exposure,  简称 HCA2E)。本文介绍了该方法对平台多目标优化的近似最优性,可以保障平台所需的拍卖机制性质,同时具备计算高效和效果稳定等优点,大量在线和离线实验验证了 HCA2E 的效果显著优于现有业界应用的方法。目前,HCA2E 已在淘宝平台部署上线,服务于海量用户。该项工作论文已发表在CIKM 2022,欢迎阅读交流。

论 文:Hierarchically Constrained Adaptive Ad Exposure in Feeds

下 载:https://arxiv.org/abs/2205.15759

1. 引言

当前,很多在线平台(例如电商、新闻推荐、社交媒体等)会以推荐和广告混合的信息流形式呈现给用户。为了降低系统设计的复杂度,广告通常会被展现在固定位置上(如图1所示)。然而,由于忽略了用户的个性化偏好,固定位置展现方法往往是比较低效的,并且难以应对不同的业务需求。相比而言,动态位置的广告展现模式能够兼顾平台效果与不同业务需要,逐渐受到业界的关注和研究。

2d0857605eccd835024553921ff27a62.png
图1:固定广告展示(左)与动态广告展示(右)

但是,在大规模信息流平台上部署广告动态位置策略会面临以下几个关键挑战。(1) 广告动态展现是一个多目标优化问题。具体地,展示更多广告会提升平台收入,但是会以损失用户体验为代价,我们需要考虑推荐侧目标与广告侧目标之间的平衡。因此,广告动态展现策略需要是帕累托最优的。(2)在实际的应用场景上会存在不同层级的业务约束:在单次请求视角上,广告位置被严格限制用来保障良好的用户体验;在全局平台视角上,商业化率(一段时间内广告的展现占比)需要被约束不超过特定上界。(3)广告拍卖中的博弈论性质需要得到保障,例如激励兼容性[1]和独立理性[2]可以在理论上鼓励广告主进行真实出价,对于广告生态系统的长期稳定是极为重要的。(4)动态广告展示策略需要具备高计算效率和低反馈延迟,保证整体系统的稳定

目前业界已有一些工作[6, 7, 8, 9]尝试研究动态广告展示问题,但也存在一些不足:(1)只考虑单次请求价值的建模,未考虑平台整体的累积效果,会导致展现策略陷入局部最优;(2)忽视了广告拍卖机制性质要求,可能会导致广告主竞价的混乱;(3)由于复杂度高而难以被部署在大规模平台上。

在本文中,我们提出了多层级约束下面向平台整体效果优化的动态展现策略,主要成果包括:

  • 将广告动态位置展现问题建模为一个动态背包问题,以适配多样的优化目标和约束;

  • 提出分层约束下的动态广告展现方法HCA2E,保留了广告拍卖的博弈论性质,并具备高计算效率和性能稳定性等优点;

  • 在手淘信息流场景搭建了一个混合系统(Merging Server),其接受上游推荐系统和广告系统的候选结果作为输入,基于HCA2E方法产生推荐和广告的返回队列。在线和离线实验结果均验证了该方法的优势。

2. 问题建模

在一段特定的时间内,我们考虑将所有的用户请求描述为一个请求序列。对于单个请求,一种广告展示策略决定了广告的展现位置和顺序。此时,期望的请求效益由所有的展现结果确定。因而,是期望的推荐效益与广告效益的加权和,即:

其中是权重系数。整体优化目标是实现所有请求的累积价值最大化,但是优化过程需满足不同层级的约束条件:

  • 全局视角上,商业化率(即广告展现占比)通常需要小于一个特定的上界,即:

其中,和分别表示广告展现量与总展现量。

  • 单次请求视角上,广告的展现位置需要满足“首个广告的最高位置”和“相邻广告的最小间距”的约束,满足该约束的策略空间我们记作和。

综合以上,完整的优化问题可以表述为如下形式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值