阿里妈妈智能诊断工程能力建设

文章介绍了商家端智能诊断系统的建设目标和方案,包括通过SQL和规则引擎提升业务迭代效率,构建自动化SOP框架,以及利用Dolphin数据湖和规则引擎优化广告诊断流程。此外,还提到了低代码平台在规则编写和诊断链路上的应用,以及数据加速引擎如何降低成本并提升查询性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

丨本文作者:茂道、羲洋、君之、天柏

1. 业务背景

算法同学在日常工作中经常要面临一些耗时较多的临时工单,这类工单的问题类型五花八门,背后对应的原因也各不相同,例如广告主操作类问题、大盘流量波动问题、海选问题、粗排问题等。这类Case每次都需要耗费较长时间单独解决,没有办法沉淀相应的工具和知识体系,随之带来的是算法团队开发诊断代码工作量大、开发周期长、不宜维护等问题。

为了有效地持续提升工单处理效率,算法同学希望可以通过简易服务化方式,通过数据  + 指标  + 规则 + 服务化模式快速配置SOP诊断链路,提升自动化诊断能力,最大化提升排查效率,并沉淀业务知识库,加快后续相似问题的诊断和响应速度。未来更期望将自动化诊断能力进行服务环节前置,如xspace、袋小蜜,直接赋能广告主,并基于诊断和建设能力,升级营销诊断和袋小蜜等。因此,商家端智能诊断系统应运而生。

82135a6e5ccf25c373977a3cbd98c082.png
客服体验问题的解决思路

2. 建设目标

1)框架建设:希望通过SQL或者规则引擎+低代码方式提升业务侧迭代效率,提升算法同学的开发效率,迭代平台侧的的能力,沉淀组件和相关工程能力,整体工程资源和数据资源可控。

2)数据建设:目前replay数据、操作日志、效果数据均由算法维护或者算法可灵活获取,从算法角度可以建立完善的广告诊断数据中心,标准化数据存储方式和数据获取方式。

3)诊断规则知识库建设:通过建设示范性SOP,可以沉淀出大量可用的基础广告诊断规则(例如广告主余额不足、计划是否下线等)。同一数据诊断规则可以复用在多个SOP流程当中,用户可以基于诊断规则知识库搭建出复杂的广告诊断链路。

3. 技术方案

基于商家端引擎,我们开发了一套基于商家端框架的自动化SOP框架,将用户策略收口到商家端框架,可针对数据存储&管理、sop微服务开发&测试&监控制定标准,提升开发和迭代效率;建立数据、指标、规则、服务的统一开发标准,依托Dolphin数据湖的能力进行数据存储和查询,规则引擎支持规则输入和SOP诊断链路编排,支持用户自助迭代。利用工程团队的技术优势,提升开发和迭代效率。

  • 标准化:数据存取标准化;服务接口标准化;核心算子SQL化、函数化;

  • 可扩展:数据的扩展性;规则的扩展性;

  • 少代码:数据读取高度抽象(SQL化)、流程模块化/函数化、SOP链路可视化配置;

  • 可跟踪:日志、监控;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值