丨本文作者:茂道、羲洋、君之、天柏
1. 业务背景
算法同学在日常工作中经常要面临一些耗时较多的临时工单,这类工单的问题类型五花八门,背后对应的原因也各不相同,例如广告主操作类问题、大盘流量波动问题、海选问题、粗排问题等。这类Case每次都需要耗费较长时间单独解决,没有办法沉淀相应的工具和知识体系,随之带来的是算法团队开发诊断代码工作量大、开发周期长、不宜维护等问题。
为了有效地持续提升工单处理效率,算法同学希望可以通过简易服务化方式,通过数据 + 指标 + 规则 + 服务化模式快速配置SOP诊断链路,提升自动化诊断能力,最大化提升排查效率,并沉淀业务知识库,加快后续相似问题的诊断和响应速度。未来更期望将自动化诊断能力进行服务环节前置,如xspace、袋小蜜,直接赋能广告主,并基于诊断和建设能力,升级营销诊断和袋小蜜等。因此,商家端智能诊断系统应运而生。

2. 建设目标
1)框架建设:希望通过SQL或者规则引擎+低代码方式提升业务侧迭代效率,提升算法同学的开发效率,迭代平台侧的的能力,沉淀组件和相关工程能力,整体工程资源和数据资源可控。
2)数据建设:目前replay数据、操作日志、效果数据均由算法维护或者算法可灵活获取,从算法角度可以建立完善的广告诊断数据中心,标准化数据存储方式和数据获取方式。
3)诊断规则知识库建设:通过建设示范性SOP,可以沉淀出大量可用的基础广告诊断规则(例如广告主余额不足、计划是否下线等)。同一数据诊断规则可以复用在多个SOP流程当中,用户可以基于诊断规则知识库搭建出复杂的广告诊断链路。
3. 技术方案
基于商家端引擎,我们开发了一套基于商家端框架的自动化SOP框架,将用户策略收口到商家端框架,可针对数据存储&管理、sop微服务开发&测试&监控制定标准,提升开发和迭代效率;建立数据、指标、规则、服务的统一开发标准,依托Dolphin数据湖的能力进行数据存储和查询,规则引擎支持规则输入和SOP诊断链路编排,支持用户自助迭代。利用工程团队的技术优势,提升开发和迭代效率。
标准化:数据存取标准化;服务接口标准化;核心算子SQL化、函数化;
可扩展:数据的扩展性;规则的扩展性;
少代码:数据读取高度抽象(SQL化)、流程模块化/函数化、SOP链路可视化配置;
可跟踪:日志、监控;