- 博客(240)
- 收藏
- 关注
原创 Manus模式真的有用?阿里妈妈业务风控「深度研究」初探
为了守护平台生态,风控团队持续为阿里妈妈、闲鱼、飞猪、优酷、Lazada 等多个业务提供支撑,覆盖站内与站外的多类媒体,保障数十条产品线的业务安全。不过与他们的通用性设计不同,我们更强调在风控场景的上下文扩展与图结构建模,突出大模型在异构环境中的主动推理与因果建构能力。「研究」部分借助大模型的多模态理解与推理能力:我们为图谱节点构建融合文本、图像、统计与时序行为的描述,通过 System Prompt 结合检索式上下文注入,引导 LLM/VLM 进行语义分析与因果推理,从而生成更具深度和解释力的风险判断。
2025-05-14 18:59:22
600
原创 阿里妈妈LMA2新进展:集成大语言模型与电商知识的通用召回大模型URM
对于不同的召回目标,只需要调整输入的任务描述 Prompt,即可改变输出的召回集合。模型推理服务的任务是根据接收到的 Prompt 输入完成完整的打分和检索逻辑,传回最终召回的商品集合,包括亿级商品表征查询模块、大模型推理服务和商品解码模块(HNSW 检索)三部分,并通过集成部署避免版本不一致问题。个用户表征,分别和目标商品表征计算内积,然后用它们的线性组合作为最终的分数(实践中发现 max 函数相比 avg 效果更好),这种方式充分保留了用户和商品之间的复杂建模能力,提高了模型能力的上界。
2025-05-12 20:41:31
1152
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
611
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
769
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
790
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
773
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
860
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
727
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
689
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
954
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
697
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
912
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
301
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
660
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
732
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
753
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
535
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
624
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
724
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
777
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
706
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
849
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
740
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
599
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
677
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
766
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
638
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
623
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
672
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
692
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
530
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
578
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
654
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
865
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
549
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
972
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
915
原创 WWW‘25 | 大模型深度赋能搜索广告:相关性大模型多维知识蒸馏
在大模型掀起互联网各行业变革的时代,搜索广告能否借助大模型的东风,为广告营收与消费者购物体验带来持续增量?本文介绍阿里妈妈搜索广告相关性团队在相关性大模型建设、大模型赋能在线模型以保障淘宝消费者体验的前沿研究工作。在电商搜索系统中,精准的搜索结果相关性建模对于提升用户体验和保障用户满意度具有重要意义。近期,基于大语言模型(LLM)的相关性建模方法展现了强大的性能和长尾场景的泛化能力,相较于传统神经网络方法具有显著优势。然而,LLM相关性建模方法在实际应用中仍面临两大挑战:其一,模型参数量庞大且计算需求高,难
2025-04-23 19:15:31
782
原创 “比人类还会骗人“:Z世代大学生用AI重构“谁是卧底“,各家模型大乱斗
与首次比赛相比,本次比赛排名前三的选手均选择了使用具备推理能力的模型,如 claude-3.7-thinking、deepseek-r1,这一选择背后突显了在“谁是卧底”这类需要思考、伪装的真实任务中,推理模型所具备的天然优势。随着LLM模型日新月异的发展、推理模型的开源和普及,本届比赛选手的Agent,普遍有了更强大基座模型的武装,也在比赛中表现出了非常多令人类都自叹弗如的高光时刻。期待通过比赛的形式,帮助更多对AI感兴趣的同学打开想象力的大门,激励大家投身到对AI的研究和探索当中。
2025-04-23 19:15:31
278
原创 WWW‘25 | DAGPrompT:分布感知的图提示微调方法
要在复杂图上实现更优的泛化表现,需要应对两个关键挑战:(1)提升模型对下游任务中新分布的适应能力,缓解因异质性导致的预训练与微调之间的分布差异;这一现象印证了我们在前文中的观点:在结构复杂的图上,预训练任务与下游任务之间存在较大的分布偏差,单纯依赖任务重构或Prompt机制难以充分弥合这一差异。异质性的存在限制了Prompt方法在学习有效嵌入时的表现。我们在10个数据集和14个主流基线方法上的实验结果表明,DAGPrompT在节点分类任务中的准确率最高提升可达 4.79%,充分验证了方法的有效性与优越性。
2025-04-23 19:15:31
490
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人