阿里妈妈技术

阿里妈妈官方技术号,关于阿里妈妈的技术创新均呈现于此~ 欢迎关注

  • 博客(811)
  • 收藏
  • 关注

原创 破解集合价值建模与实时推理难题:生成式召回大模型的工业级落地实践 | 搜索广告AI大模型创新实践

核心思路是:在Trie树构建时,将Bidword价值信息编码至解码路径的token节点,使每个token携带下游关键词的价值分布,在解码时,VALUE模块从加权Trie中提取下一个token的价值奖励信息,调整输出概率分布,最大化整体奖励(价值+相关性)。是搜推广系统在大模型时代的重要演进方向,其核心思想是将召回任务建模为序列生成问题,直接由用户查询(Query)或行为上下文生成候选物品的语义标识(如基于RQ-VAE的层次语义ID,简称SID),从而突破传统倒排索引或向量检索在泛化性与语义覆盖上的局限。

2025-12-10 18:05:05 962

原创 生成式相关性大模型驱动新范式:实现搜索广告体验与营收双赢 | 搜索广告AI大模型创新实践

首先,我们通过夯实电商通识基座、利用CoT攻克复杂语义推理、引入多模态并实现与业务标准的深度对齐这关键三步,成功构建了比肩人类专家的判别能力,奠定了破局的能力基础。这一变革在准确过滤无关广告的同时,大幅提升了相关广告的供给数量(+32%),有效提高了高质量广告的竞价密度,从而抵消了管控带来的负向影响,使得体验优化稳定实现双赢,迈入共同增长的新时代。综上分析,体验优化并非传统的词匹配和浅层模型可解决,为了让大模型真正胜任复杂的电商相关性判别任务,LORE的技术演进并未止步于简单的SFT应用,而是围绕“

2025-12-03 18:02:49 854

原创 从算力迷途到范式新生:生成式预估模型的思考与实践 | 搜索广告AI大模型创新实践

FAT 的本质,是一次面向现代硬件的计算范式升级:它证明,即使面对高度异构的表格数据,只要架构设计与硬件的高吞吐、高算术强度特性对齐,并融入必要的领域约束,就能打通“算力投入 → 模型效果”的高效转化路径。这让我们意识到,单纯追求指标提升而忽视计算效率,实际上是在用昂贵的GPU执行低效任务,长期来看将制约模型的演进空间。Transformer 通过自注意力机制摆脱了 RNN 的序列依赖,实现了高度并行的训练结构,不仅提升了长序列建模能力,也更好地适配了 GPU 的并行计算特性,为后续规模化奠定了基础。

2025-11-26 18:00:59 352

原创 视觉感知与认知跃迁:电商多模态表征建模新范式 | 搜索广告AI大模型创新实践

基于以上差异,我们对表征应用方式的认知也产生了变化。如下表所示,业界当前的主流方案仍以端到端为主,其特点是侧重特征交互,理论上多模态模型与CTR模型联合训练,能和下游目标完全对齐,但由于稀疏和稠密模型的架构差异,实际无法充分发挥多模态模型的作用,而且CTR模型的计算很重,相应多模态模型的数据和参数规模都比较小,无法充分发挥大模型在Scaling Law方面的优势。同时,解耦模式下,表征模型和CTR模型可以独立迭代,不同阶段模型优化的侧重点不同,在MOON系列的迭代过程中,我们也逐步积累了丰富的实践经验。

2025-11-19 18:00:36 894

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 968

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 756

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 1011

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 963

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 591

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 414

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 652

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 1010

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 789

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 964

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 1024

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 558

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

▐ 摘要阿里妈妈的联盟营销生态刻画了商品在淘客和用户间的推广和传播路径,形成了庞大的时空网络传播图。淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。如何准确预测商品在淘客的推广量,决定了营销预算分配,以及最优预算分配下平台可获得的引流和成交。目前,业界主流的评估与预测体系普遍关注推广者直接带来的销量(Self-sales),我们称之为“直接贡献”评估范式。这种范式虽然直观,但其存在着明显的局限性:它忽视了推广者在其社交网络中通

2025-11-11 18:01:07 601

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 343

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

▐ 摘要阿里妈妈的联盟营销生态刻画了商品在淘客和用户间的推广和传播路径,形成了庞大的时空网络传播图。淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。如何准确预测商品在淘客的推广量,决定了营销预算分配,以及最优预算分配下平台可获得的引流和成交。目前,业界主流的评估与预测体系普遍关注推广者直接带来的销量(Self-sales),我们称之为“直接贡献”评估范式。这种范式虽然直观,但其存在着明显的局限性:它忽视了推广者在其社交网络中通

2025-11-11 18:01:07 329

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 336

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 592

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 571

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 652

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 806

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 668

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 575

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 853

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 777

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 941

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 278

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 566

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 686

原创 CIKM‘25 | 联盟营销场景下,基于时空动态网络的两阶段传播规模预测

淘客推广者 (Promoter) 对商品的推广量,反应了淘客推广商品的积极性,决定了淘客推广所需要花费的渠道资源和可能获得的收益。为了科学地量化推广者的间接传播价值,我们首先需要从原始的订单数据中,通过归因分析,追溯出每一笔订单所对应的完整推广链路(即,从最初选品的推广者到最终促成购买的推广者)。在这种方式下,自销售不为零但激活率为零的后代,以及自销售量为零的后代,都会被自动排除在外,只留下激活率和自销售量均大于零的后代,而这些后代正是合成传播规模的有效成分,这确保传播规模的准确预测。

2025-11-11 18:01:07 755

原创 无限创意,即刻成片:阿里妈妈推出“淘宝星辰·短视频”

传统模式下,繁琐的策划、昂贵的拍摄和复杂的剪辑流程,构成了一道难以逾越的技术与资源壁垒,成为困扰无数商家与内容创作者的核心瓶颈。为了压缩模型RT,将模型多次调用整合成一次调用,将前3步的人设推荐->主题钩子生成->大纲生成的结果作为一步模型的thinking内容(适当做进一步简化处理),第4步台词生成作为最终的结果,总的token数减少为原来的1/3,RT显著降低,同时剧本生成质量保持持平。“生物学博士”人设,从成分解析的视角,利用专业知识分析身体乳的保湿原理,增加专业背书,能够引起用户的情感共鸣。

2025-11-05 19:00:19 1003

原创 商品入画,文案生花:阿里妈妈推出淘宝星辰 · 图文海报2.0

为训练此模型,我们特别调整了Prompt的范式,同时规避了易导致画面出错的元素。这成功地在“数据质量”与“模型效果”之间搭建起一座坚实的桥梁,为PosterCaptioner模型的迭代优化提供了直接、可量化的指导,形成了高效的闭环。为了解决初期文案质量不高、逻辑性欠佳的问题,我们首先采用了一种整体性策略,让模型能够一次性生成多条相互关联的文案,确保了内容上的连贯与协调。以李宁跑步鞋为例,针对“一步轻盈”的卖点,模型精准理解其内涵,并通过将鞋子置于云朵之上的创意呈现,充分展现了其在电商设计领域的专业水准。

2025-10-29 19:01:07 629

原创 AI 模特,一键穿戴:阿里妈妈推出淘宝星辰·服饰生图

对于参考生图模型,多条件的一致性数据是极难获取的,通常我们能获取到的数据都只是单条件一致性数据,例如在一家商铺中,同时筛选出单件服饰平铺图数据和模特上身图数据是比较容易的,但如果想同时筛选出上下衣、人脸、鞋子、包包等配对数据则是十分困难的。因此我们设计了一种基于单参考图数据训练多参考图的框架,在这种架构下,我们可以方便地进行各种类目的扩展,并且由于大量单条件数据对的训练,我们的模型在不同类目的泛化方面也展现出了优秀的效果。高质量训练数据是驱动模型能力提升的核心引擎,我们进行了广泛的数据寻源工作。

2025-10-22 18:00:50 1115

原创 精准一致,服务商家:阿里妈妈推出淘宝星辰·图像编辑

更重要的是,当前许多编辑工具都是为“通用场景”设计的,没有专门针对电商的优化,比如商品主体的稳定性、图片细节的高保真、商品与文字布局的绝对还原等关键专业需求。设计理念: 基于先模式转换后聚焦一致性的想法,我们设计了“基座模型 + 模式转换模块 + 一致性增强模块”的分层框架,该框架在有效提升一致性的同时具备高度灵活性和可扩展性,能够便捷地适配不同的开源或自研的基础模型。淘宝星辰 · 图像编辑 】模型,以电商产品级高一致性为核心,实现了在商品主体和布局不变的前提下,精准、高保真的图像编辑体验。

2025-10-15 18:01:02 964

原创 可信执行环境(TEE)技术|基于硬件隔离的可信计算

可信执行环境是隐私计算时代构建系统信任的硬件基石,它像一座“安全飞地”:在设备的中央处理器中划出一块受硬件保护的隔离区域,确保敏感代码与数据在此以明文形式安全执行,即使操作系统被攻破或恶意软件肆意横行,也无法窥探其内部运行逻辑。TEE 不依赖对网络或管理员的信任,而是以芯片为信任根,提供可验证、可度量的安全保障。TEE 正与安全多方计算、联邦学习、差分隐私深度融合,构筑从数据输入到结果输出的全链路防护,真正实现数据“可用不可见、可控不可篡”。在金融支付、跨域协同、隐私推理等高安全场景中,TEE 正成为连接性

2025-10-15 18:01:02 864

原创 差分隐私(DP)技术 | 基于噪声扰动的隐私计算

当前,差分隐私已进入与业务流程深度融合的新阶段。上查询结果不可区分,确保攻击者无法通过输出结果反推个体数据的存在与否,从而实现了“隐私泄露的边界可量化”,并结合可控噪声机制、动态适应性设计等技术,有效解决了传统匿名化/脱敏技术在隐私量化、效用平衡及动态场景中的不足,成为兼顾数据安全与可用性的核心技术。正是在上述隐私度量、模型架构、交互模式、实现机制与预算核算工具的螺旋上升中,差分隐私完成了从实验室里“能否保证隐私”的理论验证,到工业级“能否高效可用”的工程落地,再到如今“面向业务合规”的普遍部署的跨越。

2025-09-24 18:00:44 691

原创 联邦学习(FL)技术 | 分布式AI的隐私协奏曲

联邦学习的核心优势在于:打破数据壁垒,促进跨机构数据融合与价值释放,同时通过将原始数据留在本地,并结合差分隐私(DP)的噪声注入策略、同态加密(HE)的密文计算特性以及安全多方计算(MPC)的协议设计,在训练过程中构建多层防护体系,从根本上规避训练数据的隐私泄露风险。在整个前向和反向的过程中发送方接收到的数据都是接收方添加过噪声的,这些噪声在训练过程中会被双方以一种不影响隐私保护效果的机制去除,接收方接收到的数据都是同态加密后的,能够完全保证双方的数据安全的同时也会保证模型的精度不受损失。

2025-09-17 18:01:29 1247

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除