PyTorch示例——使用Transformer写古诗

PyTorch示例——使用Transformer写古诗

1. 前言

2. 版本信息

  • PyTorch: 2.1.2
  • Python: 3.10.13

3. 导包

import math
import numpy as np
from collections import Counter
import torch
from torch import nn
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import tqdm
import random
import sys

print("Pytorch 版本:", torch.__version__)
print("Python  版本:", sys.version)
Pytorch 版本: 2.1.2
Python  版本: 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0]

4. 数据与预处理

数据下载

先看一下原始数据

# 数据路径
DATA_PATH = '/kaggle/input/poetry/poetry.txt'

# 先看下原始数据,每一行格式为"诗的标题:诗的内容"
with open(DATA_PATH, 'r', encoding='utf-8') as f:
    lines = f.readlines()
    for i in range(0, 5):
        print(lines[i])
    print(f"origin_line_count = {len(lines)}")
首春:寒随穷律变,春逐鸟声开。初风飘带柳,晚雪间花梅。碧林青旧竹,绿沼翠新苔。芝田初雁去,绮树巧莺来。

初晴落景:晚霞聊自怡,初晴弥可喜。日晃百花色,风动千林翠。池鱼跃不同,园鸟声还异。寄言博通者,知予物外志。

初夏:一朝春夏改,隔夜鸟花迁。阴阳深浅叶,晓夕重轻烟。哢莺犹响殿,横丝正网天。珮高兰影接,绶细草纹连。碧鳞惊棹侧,玄燕舞檐前。何必汾阳处,始复有山泉。

度秋:夏律昨留灰,秋箭今移晷。峨嵋岫初出,洞庭波渐起。桂白发幽岩,菊黄开灞涘。运流方可叹,含毫属微理。

仪鸾殿早秋:寒惊蓟门叶,秋发小山枝。松阴背日转,竹影避风移。提壶菊花岸,高兴芙蓉池。欲知凉气早,巢空燕不窥。

origin_line_count = 43030

开始处理数据,过滤掉异常数据

# 单行诗最大长度
MAX_LEN = 64
MIN_LEN = 5
# 禁用的字符,拥有以下符号的诗将被忽略
DISALLOWED_WORDS = ['(', ')', '(', ')', '__', '《', '》', '【', '】', '[', ']', '?', ';']

# 一首诗(一行)对应一个列表的元素
poetry = []

# 按行读取数据 poetry.txt
with open(DATA_PATH, 'r', encoding='utf-8') as f:
    lines = f.readlines()
# 遍历处理每一条数据    
for line in lines:
    # 利用正则表达式拆分 标题 和 内容
    fields = line.split(":")
    # 跳过异常数据
    if len(fields) != 2:
        continue
    # 得到诗词内容(后面不需要标题)
    content = fields[1]
    # 过滤数据:跳过内容过长、过短、存在禁用符的诗词
    if len(content) > MAX_LEN - 2 or len(content) < MIN_LEN:
        continue
    if any(word in content for word in DISALLOWED_WORDS):
        continue
        
    poetry.append(content.replace('\n', '')) # 最后要记得删除换行符
for i in range(0, 5):
    print(poetry[i])
    
print(f"current_line_count = {len(poetry)}")
寒随穷律变,春逐鸟声开。初风飘带柳,晚雪间花梅。碧林青旧竹,绿沼翠新苔。芝田初雁去,绮树巧莺来。
晚霞聊自怡,初晴弥可喜。日晃百花色,风动千林翠。池鱼跃不同,园鸟声还异。寄言博通者,知予物外志。
夏律昨留灰,秋箭今移晷。峨嵋岫初出,洞庭波渐起。桂白发幽岩,菊黄开灞涘。运流方可叹,含毫属微理。
寒惊蓟门叶,秋发小山枝。松阴背日转,竹影避风移。提壶菊花岸,高兴芙蓉池。欲知凉气早,巢空燕不窥。
山亭秋色满,岩牖凉风度。疏兰尚染烟,残菊犹承露。古石衣新苔,新巢封古树。历览情无极,咫尺轮光暮。
current_line_count = 24375
  • 过滤掉出现频率较低的字符串,后面统一当作 UNKNOWN
# 最小词频
MIN_WORD_FREQUENCY = 8

# 统计词频,利用Counter可以直接按单个字符进行统计词频
counter = Counter()
for line in poetry:
    counter.update(line)
# 过滤掉低词频的词
tokens = [token for token, count in counter.items() if count >= MIN_WORD_FREQUENCY]
# 打印一下出现次数前5的字
for i, (token, count) in enumerate(counter.items()):
    print(token, "->",count)
    if i >= 4:
        break;
寒 -> 2612
随 -> 1036
穷 -> 482
律 -> 118
变 -> 286

定义 词典编码器 Tokenizer

class Tokenizer:
    """
    词典编码器
    """
    UNKNOWN = "<unknown>"
    PAD = "<pad>"
    BOS = "<bos>" 
    EOS = "<eos>" 

    def __init__(self, tokens):
        # 补上特殊词标记:未知词标记、填充字符标记、开始标记、结束标记
        tokens = [Tokenizer.UNKNOWN, Tokenizer.PAD, Tokenizer.BOS, Tokenizer.EOS] + tokens
        # 词汇表大小
        self.dict_size = len(tokens)
        # 生成映射关系
        self.token_id = {} # 映射: 词 -> 编号
        self.id_token = {} # 映射: 编号 -> 词
        for idx, word in enumerate(tokens):
            self.token_id[word] = idx
            self.id_token[idx] = word
        
        # 各个特殊标记的编号id,方便其他地方使用
        self.unknown_id = self.token_id[Tokenizer.UNKNOWN]
        self.pad_id = self.token_id[Tokenizer.PAD]
        self.bos_id = self.token_id[Tokenizer.BOS]
        self.eos_id = self.token_id[Tokenizer.EOS]
    
    def id_to_token(self, token_id):
        """
        编号 -> 词
        """
        return self.id_token.get(token_id)

    def token_to_id(self, token):
        """
        词 -> 编号,取不到时给 UNKNOWN
        """
        return self.token_id.get(token, self.unknown_id)

    def encode(self, tokens):
        """
        词列表 -> <bos>编号 + 编号列表 + <eos>编号
        """
        token_ids = [self.bos_id, ] # 起始标记
        # 遍历,词转编号
        for token in tokens:
            token_ids.append(self.token_to_id(token))
        token_ids.append(self.eos_id) # 结束标记
        return token_ids

    def decode(self, token_ids):
        """
        编号列表 -> 词列表(去掉起始、结束标记)
        """
        tokens = []
        for idx in token_ids:
            # 跳过起始、结束标记
            if idx != self.bos_id and idx != self.eos_id:
                tokens.append(self.id_to_token(idx))
        return tokens
    
    def __len__(self):
        return self.dict_size

定义数据集类 MyDataset

class MyDataset(TensorDataset):
    
    def __init__(self, data, tokenizer, max_length=64):
        self.data = data
        self.tokenizer = tokenizer
        self.max_length = max_length  # 每条数据的最大长度
        
    def __getitem__(self, index):
        line = self.data[index]
        word_ids = self.encode_pad_line(line)
        return torch.LongTensor(word_ids)
    
    def __len__(self):
        return len(self.data)
    
    def encode_pad_line(self, line):
        # 编码
        word_ids = self.tokenizer.encode(line)
        # 如果句子长度不足max_length,填充PAD
        word_ids = word_ids + [tokenizer.pad_id] * (self.max_length - len(word_ids))
        return word_ids

测试一下MyDataset、Tokenizer、DataLoader

  • 使用 MyDataset、Tokenizer
# 实例化 Tokenizer
tokenizer = Tokenizer(tokens)
print("tokenizer_len: ",len(tokenizer))

# 实例化MyDataset
my_dataset = MyDataset(poetry, tokenizer)
one_line_id = my_dataset[0].tolist()
print("one_line_id: ", one_line_id)

# 解码
poetry_line = tokenizer.decode(one_line_id)
print("poetry_line: ","".join([w for w in poetry_line if w != Tokenizer.PAD]))
tokenizer_len:  3428
one_line_id:  [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 9, 21, 22, 23, 24, 25, 15, 26, 27, 28, 29, 30, 9, 31, 32, 33, 34, 35, 15, 36, 37, 16, 38, 39, 9, 40, 41, 42, 43, 44, 15, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
poetry_line:  寒随穷律变,春逐鸟声开。初风飘带柳,晚雪间花梅。碧林青旧竹,绿沼翠新苔。芝田初雁去,绮树巧莺来。
  • 使用 DataLoader
# 读取一批数据,并解码
temp_dataloader = DataLoader(dataset=my_dataset, batch_size=8, shuffle=True)

one_batch_data = next(iter(temp_dataloader))

for poetry_line_id in one_batch_data.tolist():
    poetry_line = tokenizer.decode(poetry_line_id)
    print("".join([w for w in poetry_line if w != Tokenizer.PAD]))
曲江春草生,紫阁雪分明。汲井尝泉味,听钟问寺名。墨研秋日雨,茶试老僧<unknown>。地近劳频访,乌纱出送迎。
旧隐无何别,归来始更悲。难寻白道士,不见惠禅师。草径虫鸣急,沙渠水下迟。却将波浪眼,清晓对红梨。
举世皆问人,唯师独求己。一马无四蹄,顷刻行千里。应笑北原上,丘坟乱如蚁。
海燕西飞白日斜,天门遥望五侯家。楼台深锁无人到,落尽春风第一花。
良人犹远戍,耿耿夜闺空。绣户流宵月,罗帷坐晓风。魂飞沙帐北,肠断玉关中。尚自无消息,锦衾那得同。
天涯片云去,遥指帝乡忆。惆怅增暮情,潇湘复秋色。扁舟宿何处,落日羡归翼。万里无故人,江鸥不相识。
宝鸡辞旧役,仙凤历遗墟。去此近城阙,青山明月初。
夜帆时未发,同侣暗相催。山晓月初下,江鸣潮欲来。稍分扬子岸,不辨越王台。自客水乡里,舟行知几回。

5. 构建模型

位置编码器 PositionalEncoding

class PositionalEncoding(nn.Module):

    def __init__(self, d_model, dropout, max_len=2000):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        # 初始化Shape为(max_len, d_model)的PE (positional encoding)
        pe = torch.zeros(max_len, d_model)
        # 初始化一个tensor [[0, 1, 2, 3, ...]]
        position = torch.arange(0, max_len).unsqueeze(1)
        # 这里就是sin和cos括号中的内容,通过e和ln进行了变换
        div_term = torch.exp(
            torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
        )
        # 计算PE(pos, 2i)
        pe[:, 0::2] = torch.sin(position * div_term)
        # 计算PE(pos, 2i+1)
        pe[:, 1::2] = torch.cos(position * div_term)
        # 为了方便计算,在最外面在unsqueeze出一个batch
        pe = pe.unsqueeze(0)
        # 如果一个参数不参与梯度下降,但又希望保存model的时候将其保存下来,这个时候就可以用register_buffer
        self.register_buffer("pe", pe)

    def forward(self, x):
        """
        x 为embedding后的inputs,例如(1,7, 128),batch size为1,7个单词,单词维度为128
        """
        # 将x和positional encoding相加。
        x = x + self.pe[:, : x.size(1)].requires_grad_(False)
        return self.dropout(x)

古诗 Transformer 模型

class PoetryModel(nn.Module):

    def __init__(self, num_embeddings = 4096, embedding_dim=128):
        super(PoetryModel, self).__init__()
        # Embedding层
        self.embedding = nn.Embedding(num_embeddings=num_embeddings, embedding_dim=embedding_dim)
        # 定义Transformer
        self.transformer = nn.Transformer(d_model=embedding_dim, num_encoder_layers=3, num_decoder_layers=3, dim_feedforward=512)
        # 定义位置编码器
        self.positional_encoding = PositionalEncoding(embedding_dim, dropout=0)
        # 线性层输出需要和原始词典的字符编号范围对应
        self.predictor = nn.Linear(embedding_dim, num_embeddings)

    def forward(self, src, tgt):
        # 生成 Mask
        tgt_mask = nn.Transformer.generate_square_subsequent_mask(tgt.size()[-1]).to(DEVICE)
        src_key_padding_mask = PoetryModel.get_key_padding_mask(src).to(DEVICE)
        tgt_key_padding_mask = PoetryModel.get_key_padding_mask(tgt).to(DEVICE)

        # 词嵌入
        src = self.embedding(src)
        tgt = self.embedding(tgt)
        # 增加位置信息
        src = self.positional_encoding(src)
        tgt = self.positional_encoding(tgt)

        # 喂数据给 Transformer
        # permute(1, 0, 2) 将src切换成“批次”在中间维度的形式,因为没有设置batch_first
        out = self.transformer(src.permute(1, 0, 2), tgt.permute(1, 0, 2),
                               tgt_mask=tgt_mask,
                               src_key_padding_mask=src_key_padding_mask,
                               tgt_key_padding_mask=tgt_key_padding_mask)

        # 训练和推理时的行为不一样,在该模型外再进行线性层的预测,节约部分性能
        return out

    @staticmethod
    def get_key_padding_mask(tokens):
        key_padding_mask = torch.zeros(tokens.size())
        key_padding_mask[tokens == Tokenizer.PAD] = float('-inf')
        return key_padding_mask

6. 开始训练

  • 准备参数、数据、模型
# 参数配置
EPOCH_NUM = 50
BATCH_SIZE = 64  # 内存不够的话,就把BATCH_SIZE调小点
DICT_SIZE = len(tokenizer)
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# 数据 
my_dataset = MyDataset(poetry, tokenizer)
train_dataloader = DataLoader(dataset=my_dataset, batch_size=BATCH_SIZE, shuffle=True)

# 模型
model = PoetryModel(num_embeddings=DICT_SIZE).to(DEVICE)
criteria = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=5e-4)

print(model)
PoetryModel(
  (embedding): Embedding(3428, 128)
  (transformer): Transformer(
    (encoder): TransformerEncoder(
      (layers): ModuleList(
        (0-2): 3 x TransformerEncoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
          )
          (linear1): Linear(in_features=128, out_features=512, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (linear2): Linear(in_features=512, out_features=128, bias=True)
          (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.1, inplace=False)
          (dropout2): Dropout(p=0.1, inplace=False)
        )
      )
      (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
    )
    (decoder): TransformerDecoder(
      (layers): ModuleList(
        (0-2): 3 x TransformerDecoderLayer(
          (self_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
          )
          (multihead_attn): MultiheadAttention(
            (out_proj): NonDynamicallyQuantizableLinear(in_features=128, out_features=128, bias=True)
          )
          (linear1): Linear(in_features=128, out_features=512, bias=True)
          (dropout): Dropout(p=0.1, inplace=False)
          (linear2): Linear(in_features=512, out_features=128, bias=True)
          (norm1): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (norm2): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (norm3): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
          (dropout1): Dropout(p=0.1, inplace=False)
          (dropout2): Dropout(p=0.1, inplace=False)
          (dropout3): Dropout(p=0.1, inplace=False)
        )
      )
      (norm): LayerNorm((128,), eps=1e-05, elementwise_affine=True)
    )
  )
  (positional_encoding): PositionalEncoding(
    (dropout): Dropout(p=0, inplace=False)
  )
  (predictor): Linear(in_features=128, out_features=3428, bias=True)
)
  • 训练
for epoch in range(1, EPOCH_NUM + 1):
    model.train()
    total_loss = 0
    data_progress = tqdm.tqdm(train_dataloader, desc="Train...")
    for step, data in enumerate(data_progress, 1):
        data = data.to(DEVICE)
        # 随机选一个位置,拆分src和tgt
        e = random.randint(1, 20)
        src = data[:, :e]
        # tgt不要最后一个token,tgt_y不要第一个的token
        tgt, tgt_y = data[:, e:-1], data[:, e + 1:]
        
        # 进行Transformer的计算,再将结果送给最后的线性层进行预测
        out = model(src, tgt)
        out = model.predictor(out)
        # 使用view时,前面的数据必须是在内存连续的(即is_contiguous()为true)
        # 使用permute后,会导致数据不是内存连续的(即is_contiguous()为false),需要先调用contiguous(),才能继续使用view
        loss = criteria(out.view(-1, out.size(-1)), tgt_y.permute(1, 0).contiguous().view(-1))
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        total_loss += loss.item()

        # 更新训练进度
        data_progress.set_description(f"Train... [epoch {epoch}/{EPOCH_NUM}, loss {(total_loss / step):.5f}]")
Train... [epoch 1/50, loss 3.66444]: 100%|██████████| 381/381 [00:10<00:00, 35.40it/s]
Train... [epoch 2/50, loss 3.35216]: 100%|██████████| 381/381 [00:09<00:00, 39.61it/s]
Train... [epoch 3/50, loss 3.27860]: 100%|██████████| 381/381 [00:09<00:00, 39.44it/s]
Train... [epoch 4/50, loss 3.15286]: 100%|██████████| 381/381 [00:09<00:00, 39.10it/s]
Train... [epoch 5/50, loss 3.05621]: 100%|██████████| 381/381 [00:09<00:00, 39.32it/s]
Train... [epoch 6/50, loss 2.97613]: 100%|██████████| 381/381 [00:09<00:00, 39.42it/s]
Train... [epoch 7/50, loss 2.91857]: 100%|██████████| 381/381 [00:09<00:00, 38.83it/s]
Train... [epoch 8/50, loss 2.88052]: 100%|██████████| 381/381 [00:09<00:00, 39.59it/s]
Train... [epoch 9/50, loss 2.78789]: 100%|██████████| 381/381 [00:09<00:00, 39.19it/s]
Train... [epoch 10/50, loss 2.77379]: 100%|██████████| 381/381 [00:09<00:00, 38.24it/s]
......
Train... [epoch 41/50, loss 2.25991]: 100%|██████████| 381/381 [00:09<00:00, 39.89it/s]
Train... [epoch 42/50, loss 2.24437]: 100%|██████████| 381/381 [00:09<00:00, 39.72it/s]
Train... [epoch 43/50, loss 2.23779]: 100%|██████████| 381/381 [00:09<00:00, 39.09it/s]
Train... [epoch 44/50, loss 2.25092]: 100%|██████████| 381/381 [00:09<00:00, 39.16it/s]
Train... [epoch 45/50, loss 2.23653]: 100%|██████████| 381/381 [00:09<00:00, 39.90it/s]
Train... [epoch 46/50, loss 2.20175]: 100%|██████████| 381/381 [00:09<00:00, 39.51it/s]
Train... [epoch 47/50, loss 2.22046]: 100%|██████████| 381/381 [00:09<00:00, 39.83it/s]
Train... [epoch 48/50, loss 2.20892]: 100%|██████████| 381/381 [00:09<00:00, 39.84it/s]
Train... [epoch 49/50, loss 2.22276]: 100%|██████████| 381/381 [00:09<00:00, 39.35it/s]
Train... [epoch 50/50, loss 2.20212]: 100%|██████████| 381/381 [00:09<00:00, 39.75it/s]

7. 推理

直接推理

model.eval()
with torch.no_grad():
    word_ids = tokenizer.encode("清明时节")
    src = torch.LongTensor([word_ids[:-2]]).to(DEVICE)
    tgt = torch.LongTensor([word_ids[-2:-1]]).to(DEVICE)
    # 一个一个词预测,直到预测为<eos>,或者达到句子最大长度
    for i in range(64):
        out = model(src, tgt)
        # 预测结果,只需最后一个词
        predict = model.predictor(out[-1:])
        # 找出最大值的index
        y = torch.argmax(predict, dim=2)
        # 和之前的预测结果拼接到一起
        tgt = torch.cat([tgt, y], dim=1)

        # 如果为<eos>
        if y == tokenizer.eos_id:
            break

    src_decode = "".join([w for w in tokenizer.decode(src[0].tolist()) if w != Tokenizer.PAD])
    print(f"src = {src}, src_decode = {src_decode}")
    tgt_decode = "".join([w for w in tokenizer.decode(tgt[0].tolist()) if w != Tokenizer.PAD])
    print(f"tgt = {tgt}, tgt_decode = {tgt_decode}")
src = tensor([[  2, 403, 235, 293]], device='cuda:0'), src_decode = 清明时
tgt = tensor([[ 197,    9,  571,  324,  571,  116,   14,   15,   61,  770,  158,  514,
          934,    9,  228,  293,  493, 1108,   44,   15,    3]],
       device='cuda:0'), tgt_decode = 节,一夜一枝开。不是无人见,何时有鹤来。

为推理添加随机性

def predict(model, src, tgt):
    out = model(src, tgt)
    # 预测结果,只需最后一个词
    # 取3:,表示预测结果不要UNKNOWN、PAD、BOS
    _probas = model.predictor(out[-1:])[0, 0, 3:]
    _probas = torch.exp(_probas) / torch.exp(_probas).sum()  # softmax,让概率高的变得更高,便于待会儿按概率抽取时更容易抽取到概率高的

    # 取前10,再按概率分布抽取1个(提高诗词随机性)
    values, indices = torch.topk(_probas, 10, dim=0)
    target_index = torch.multinomial(values, 1, replacement=True)
    y = indices[target_index]
    # +3,因为之前移除掉了UNKNOWN、PAD、BOS
    return y + 3
def generate_random_poem(tokenizer, model, text):
    """
    随机生成一首诗、自动续写
    """
    if text == None or text == "":
        text = tokenizer.id_to_token(random.randint(4, len(tokenizer)))
    model.eval()
    with torch.no_grad():
        word_ids = tokenizer.encode(text)
        src = torch.LongTensor([word_ids[:-2]]).to(DEVICE)
        tgt = torch.LongTensor([word_ids[-2:-1]]).to(DEVICE)
        # 一个一个词预测,直到预测为<eos>,或者达到句子最大长度
        for i in range(64):
            y = predict(model, src, tgt)
            # 和之前的预测结果拼接到一起
            tgt = torch.cat([tgt, y.view(1, 1)], dim=1)

            # 如果为<eos>
            if y == tokenizer.eos_id:
                break

        # src_decode = "".join([w for w in tokenizer.decode(src[0].tolist()) if w != Tokenizer.PAD])
        # print(f"src = {src}, src_decode = {src_decode}")
        # tgt_decode = "".join([w for w in tokenizer.decode(tgt[0].tolist()) if w != Tokenizer.PAD])
        # print(f"tgt = {tgt}, tgt_decode = {tgt_decode}")
        result = torch.cat([src, tgt], dim=1)
        result_decode = "".join([w for w in tokenizer.decode(result[0].tolist()) if w != Tokenizer.PAD])
        return result_decode

for i in range(0, 5):
    poetry_line = generate_random_poem(tokenizer, model, "清明")
    print(poetry_line)
清明日已长安,不独为君一病身。唯有诗人知处在,更愁人夜月明。
清明月在何时,夜久山川有谁。今日不知名利处,一枝花落第花枝。
清明月上,风急水声。山月随人远,天河度陇平。水深秋月在,江远夜砧迎。莫问东楼兴,空怀不可情。
清明夜夜月,秋月满池塘。夜坐中琴月,空阶下菊香。风回孤枕月,月冷一枝香。惆怅江南客,明朝是此中。

8. 更多学习资料

  • 20
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值