深度学习实现物体识别画框—483人已学习
课程介绍
基于新Tensorflow物体识别技术,手把手带大家实现Faster-RCNN+Resnet和SSD+Moiblenet实现实时物体检测画框。课程中会带大家用新技术完成道路车辆识别画框,将各类车辆从视频帧中检测出来,框出。
课程收益
基于最新Tensorflow物体识别技术,手把手带大家实现Faster-RCNN+Resnet和SSD+Moiblenet实现实时物体检测画框。课程中会带大家用最新技术完成道路车辆识别画框,将各类车辆从视频帧中检测出来,框出。
讲师介绍
李豪 更多讲师课程
全栈工程师,Android,Scrapy,Django,Tornado,Openresty讲师,负责完成两个百万级并发项目,官网 https://daikuan.2345.com/,http://www.kerkr.com/
课程大纲
1. 安装protobuf,pip9 33:24
2. 安装python包 13:38
3. 下载faster_rcnn模型 13:38
4. 迁移学习训练自己的模型 4:15
大家可以点击【 查看详情】查看我的课程
课程介绍
基于新Tensorflow物体识别技术,手把手带大家实现Faster-RCNN+Resnet和SSD+Moiblenet实现实时物体检测画框。课程中会带大家用新技术完成道路车辆识别画框,将各类车辆从视频帧中检测出来,框出。
课程收益
基于最新Tensorflow物体识别技术,手把手带大家实现Faster-RCNN+Resnet和SSD+Moiblenet实现实时物体检测画框。课程中会带大家用最新技术完成道路车辆识别画框,将各类车辆从视频帧中检测出来,框出。
讲师介绍
李豪 更多讲师课程
全栈工程师,Android,Scrapy,Django,Tornado,Openresty讲师,负责完成两个百万级并发项目,官网 https://daikuan.2345.com/,http://www.kerkr.com/
课程大纲
1. 安装protobuf,pip9 33:24
2. 安装python包 13:38
3. 下载faster_rcnn模型 13:38
4. 迁移学习训练自己的模型 4:15
大家可以点击【 查看详情】查看我的课程