【达摩院OpenVI—通用检测系列之视频目标检测】(ICASSP 2023) 针对流感知的长短支路网络 LongShortNet

文章介绍了视频目标检测(VOD)的任务和优势,强调了从离线检测到流感知的转变,提出了流平均精度(sAP)指标以评估在线检测性能。ECCV2020的BestPaperHonorableMention《TowardsStreamingPerception》引入了这一概念,并且在ICASSP2023中,LongShortNet作为针对流感知的网络结构被提出,旨在同时优化检测精度和延迟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景介绍

     传统视频目标检测(Video Object Detection, VOD)任务以一段视频作为输入,利用视频的时序信息进行目标检测,并最终输出每一帧视频帧的检测结果。其相比图像目标检测(Image Object Detection, IOD)任务,优势在于能够利用视频的时序信息,对运动模糊、图像失焦、遮挡、物体姿态变化等困难的场景具有更强的鲁棒性。然而,传统的VOD和IOD都是离线(offline)的检测,即仅考虑算法的检测精度,未考虑算法的延时

为了更加贴近现实场景,ECCV 2020 论文《Towards Streaming Perception》[1](获得Best Paper Honorable Mention)首次提出了流感知(Streaming Perception)任务,该任务作为VOD的一个细分方向,提出了流平均精度(Streaming Average Precision, sAP)指标,衡量算法的在线(online)检测能力,即同时衡量算法的精度和延时。

完整内容请点击下方链接查看: 

【达摩院OpenVI—通用检测系列之视频目标检测】(ICASSP 2023) 针对流感知的长短支路网络 LongShortNet-阿里云开发者社区

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《                                                      阿里云开发者社区用户服务协议》和《                                                      阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写                                                      侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值