语言模型在数学解题中思维链(Chain-of-Thought)设计

介绍一下最近在语言模型做解题方面的进展"Design of Chain-of-Thought in Math Problem Solving".
文章标题
大模型在数学解题方面效果现在其实还并不算完美,尤其是使用自然语言推理,还不能生成完全可靠的Chain-of-thought (CoT)的推理步骤。后来有作者也提出运用Python程序来当作CoT (Gao et al., 2023), 效果也是非常显著。

博客介绍的这篇文章没有太多的去提出一些新的东西,只是针对CoT的各种表达在数学解题中的效果做一个比较,同时也采用了 SFT + Majority Voting 或者 SFT + Reranking 的范式,对整体效果做了一个比较大的提升。

研究介绍

就是看各种各样的CoT,哪一个在数学解题这个任务上表现更好了。比较直接,对比下面几种CoT 和程序的表达对比,同时文章采用了Wolfram和Python两种程序语言来做对比实验。

  • Natual lanuage (NL): 和CoT prompting 的原论文一样,用自然语言来表达中间的推理过程。
  • Comment-Describ
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Allan Jie

希望能和大家一起提升技能

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值