DDP的分布式训练方法采用数据并行方式,相当于通过增大数据的batch来加快训练。但对于大模型(LLM)来说,DDP已经不适用了。因为LLMs的模型本身太大,一块GPU都放不下怎么可能去复制从而实现数据并行呢。所以LLM的训练采用模型并行的方式来训练。
FairScale 是一个用于高性能和大规模训练的 PyTorch 扩展库。该库扩展了基本的 PyTorch 功能,同时添加了新的 SOTA 扩展技术。FairScale 以可组合模块和易于使用的 API 的形式提供最新的分布式训练技术。这些 API 是研究人员工具箱的基本组成部分,因为他们试图用有限的资源扩展模型。(来源官网)
本次熟悉一下其常用的设置。
目录
一、预先准备
随便准备一个模型作为例子。以下面模型为例(可以运行),简单的分类任务。
import torch
import torch.nn as nn
import random
import torchvision.datasets as data
import torchvision.transforms as transforms
import torch.optim as optim
class Classifier(nn.Module):
def __init__(self):
super(Classifier, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(in_channels=3,out_channels=32, kernel_size=4,stride=2, padding=1),
nn.ReLU(),
nn.MaxPool2d((2,2),1),
nn.Conv2d(in_channels=32,out_channels=64, kernel_size=3, stride=2, padding=1),
nn.ReLU(),
nn.MaxPool2d((2,2),1),
nn.Conv2d(64, 128, 2, 2,1),
nn.ReLU(),
nn.MaxPool2d((2,2),1)
)
#
self.classifier = nn.Sequential(
nn.Linear(3*3*128,4096),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(4096,2048),
nn.ReLU(),
nn.Linear(2048,1024),
nn.ReLU()
)
self.last_layer_input = nn.Sequential(nn.Linear(1024,10),
nn.Softmax())
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
x = self.last_layer_input(x)
return x
if __name__ == '__main__':
batchSize = 50
nepoch = 45
print("Random Seed: 88")
random.seed(88)
torch.manual_seed(88)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dataset = data.CIFAR10(root='/root/data/zjx/Datasets/cifar10', # 这个路径自己改
train=True,
transform=transforms.Compose([transforms.ToTensor()]),
download=True
)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batchSize,
shuffle=True)
Model = Classifier().to(device)
Cross_entropy = nn.BCELoss().to(device)
Optimizer = optim.Adam(Model.parameters(), lr=0.00001)
for epoch in range(nepoch):
for i, (data, label) in enumerate(dataloader, 0):
data = data.to(device)
label_onehot = torch.zeros((data.shape[0], 10)).to(device)
label_onehot[torch.arange(data.shape[0]), label] = 1
output = Model(data)
loss = Cross_entropy(output, label_onehot)
print('{}/{}: Loss is {}'.format(i, epoch, loss.data))
Model.zero_grad()
loss.backward()
Optimizer.step()
二、使用 PIPELINE PARALLEL 进行模型分片
1、官网的教程
官网的示例看这里,主要关键点包括切片的语法设置,以及设备对齐。
模型切片的要求格式
import fairscale
import torch
import torch.nn as nn
model = nn.Sequential(
torch.nn.Linear(10, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 5)