Tribonacci数
的tribonacci数字是的一般化斐波那契数由下式定义,,,和递推方程
(1)
|
对于(例如,Develin 2000)。他们代表了的情况下,斐波那契 ñ -工序数。
使用上述索引约定的1、2,...的前几个术语为0、1、1、2、4、7、13、24、44、81、149,...(OEIS A000073 ;但是采用备用索引约定和)。
前几个素数bonbonacci数是2,7,13,149,19341322569415713958901,...(OEIS A092836),其索引为3、5、6、10、86、97、214、801、4201、18698、96878, ...(OEIS A092835),没有其他人拥有(E. W. Weisstein,2009年3月21日)。
使用布朗准则,可以证明Tribonacci数是完整的。也就是说,每个正数都可以写为不同的tribonacci数的总和。此外,每个正数都有独特的Zeckendorf式展开式,作为不同的tribonacci数之和,并且该和不包含三个连续的tribonacci数。可以使用贪婪算法来计算类似Zeckendorf的展开。
可以通过以下方式明确给出第tribonacci数 的精确表达式:
(2)
| |||
(3)
|
多项式的三个根 在哪里
(4)
|
可以用更简洁的形式写成
(5)
|
其中是多项式的次方根
(6)
|
Tribonacci数也可以使用生成函数来计算
(7)
|
另一个明确的公式为也被赋予
(8)
|
其中表示最接近的整数函数(Plouffe)。分子的第一部分 与的实根有关,但是分母的确定需要应用LLL算法。
相邻项的比率趋向于正实 根 ,即1.83929 ...(OEIS A058265),有时也称为tribonacci常数。
通过考虑级数(mod ),可以证明任何整数都是某些整数的一个因数(Brenner 1954)。的最小值为哪些为因子,2,...被1,3,7,4,14,7,5,7,9,19,8,7,6,...(OEIS给出A112305)。
tribonacci常数在缓冲立方体,其双重五角二十面体四面体和缓冲立方体-五角二十面体复合物的性质中极为突出。它甚至可以用来表示硬六边形熵常数。
随着不同的初始值,该tribonacci序列开始为,,,,,,,,...,这样做具有以下序列作为特殊情况。
信息系统 | 顺序 | |||
0 | 0 | 1个 | 0000 | 0、1、1、1、2、4、7、13、24、44、81、149,... |
1个 | 1个 | 1个 | A000213 | 1、1、1、3、5、9、17、31、57、105、193、355,... |
0 | 1个 | 0 | A001590 | 0、1、0、1、2、3、6、11、20、37、68、125、230,... |
3 | 1个 | 3 | 001 | 3、1、3、7、11、21、39、71、131、241、443、815,... |
2个 | 2个 | A100683 | ,2、2、3、7、12、22、41、75、138、254、467,... |
泰波那契序列 Tn 定义如下:
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
给你整数 n
,请返回第 n 个泰波那契数 Tn 的值。
示例 1:
输入:n = 4 输出:4 解释: T_3 = 0 + 1 + 1 = 2 T_4 = 1 + 1 + 2 = 4
示例 2:
输入:n = 25 输出:1389537
提示:
0 <= n <= 37
- 答案保证是一个 32 位整数,即
answer <= 2^31 - 1
。
package Solution1137;
import java.util.ArrayList;
import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Queue;
class Solution {
public int tribonacci(int n) {
if (n == 0) {
return 0;
}
if (n == 1) {
return 1;
}
if (n == 2) {
return 1;
}
int a = 0;
int b = 1;
int c = 1;
int sum = 0;
for (int i = 0; i < n - 2; i++) {
sum = a + b + c;
a = b;
b = c;
c = sum;
}
return sum;
}
public static void main(String[] args) {
Solution sol = new Solution();
int n = 4;
System.out.println(sol.tribonacci(n));
}
}