How do I determine if a directory is a mounted NFS mount point in shellscript

I want to write a sh/bash script that can determine whether a particular directory is a mount point for an NFS filesystem.

eg something like

$ mkdir localdir
$ mkdir remotedir
$ mount host:/share ./remotedir
$ classify_dirs.sh
 -->  localdir is local
 -->  remotedir is an NFS mount point

This question is effectively a dup of how-can-i-tell-if-a-file-is-on-a-remote-filesystem-with-perl

The short answer is to use the stat command

eg

$ stat -f -L -c %T localdir
ext2/ext3
$ stat -f -L -c %T remotedir
nfs

Then a directory is an NFS mount point if its type is 'nfs' and its parent directory isn't.

In R, a permutation test can be used to determine an appropriate threshold. Here is a general example code to illustrate the process of using a permutation test to determine a threshold: ```R # Generate some sample data set.seed(123) group1 <- rnorm(50, mean = 0, sd = 1) group2 <- rnorm(50, mean = 1, sd = 1) data <- c(group1, group2) group <- factor(rep(c("Group1", "Group2"), each = 50)) # Calculate the observed test statistic observed_stat <- mean(group1) - mean(group2) # Number of permutations n_permutations <- 1000 permuted_stats <- numeric(n_permutations) # Perform permutation test for (i in 1:n_permutations) { permuted_group <- sample(group) permuted_stat <- mean(data[permuted_group == "Group1"]) - mean(data[permuted_group == "Group2"]) permuted_stats[i] <- permuted_stat } # Calculate the p - value p_value <- mean(abs(permuted_stats) >= abs(observed_stat)) # Determine the threshold based on a significance level (e.g., 0.05) significance_level <- 0.05 threshold <- quantile(abs(permuted_stats), 1 - significance_level) # Print the results cat("Observed test statistic:", observed_stat, "\n") cat("P - value:", p_value, "\n") cat("Threshold:", threshold, "\n") ``` In this code: 1. First, sample data is generated for two groups. 2. The observed test statistic (the difference in means between the two groups) is calculated. 3. A specified number of permutations are performed. In each permutation, the group labels are randomly shuffled, and the test statistic is recalculated. 4. The p - value is calculated based on the proportion of permuted statistics that are more extreme than the observed statistic. 5. The threshold is determined by taking the appropriate quantile of the absolute values of the permuted statistics based on the chosen significance level.
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值