机器学习:随机森林RF-OBB袋外错误率

本文深入探讨随机森林中的袋外错误率(OOB Error),解释其重要性和计算方法,并指出它是随机森林泛化误差的无偏估计,类似于交叉验证的结果。通过分析,帮助理解如何在构建随机森林时选择最佳特征数量。
摘要由CSDN通过智能技术生成

        文章讲解比较详细,且有Python代码,可以作为有用的参考。

         原文链接:http://blog.csdn.net/zhufenglonglove/article/details/51785220


 参数:OBB-袋外错误率

         构建随机森林的另一个关键问题就是如何选择最优的m(特征个数),要解决这个问题主要依据计算袋外错误率oob error(out-of-bag error)。

    随机森林有一个重要的优点就是,没有必要对它进行交叉验证或者用一个独立的测试集来获得误差的一个无偏估计。它可以在内部进行评估,也就是说在生成的过程中就可以对误差建立一个无偏估计。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值