概率学基础
一连有梦咿
这个作者很懒,什么都没留下…
展开
-
协方差及相关性
协方差(covariance)用于衡量两个随机变量的联合变化程度;如果两个随机变量不是独立变量,两个变量会存在一定程度的关联性,如下图所示,如果协方差大于零,说明两个随机变量是正相关,如果协方差小于零,说明两个随机变量是负相关。如果两个随机变量没有强的相关性,那协方差接近零。如果两个随机变量存在很强的相关性,协方差也有可能接近零。如下图所示,如果随机变量X和Y协方差很大,那这两个随机变量一定会存在很强的相关性吗?计算协方差的另一种形式如果两个变量是独立的,那协方差为零,如果协方差为零原创 2021-12-23 17:00:56 · 6049 阅读 · 0 评论 -
联合分布及其随机变量
联合分布(joint distribution)定义对于两个随机变量X,Y,联合分布就是X和Y同时发生的概率分布。离散随机变量的联合分布连续型随机变量的联合分布联合分布实例联合分布的计算下面的例子中,两个随机变量是独立的...原创 2021-12-23 11:03:17 · 3830 阅读 · 0 评论 -
几种连续型随机变量分布总结
简单描述了均匀分布,正态分布以及指数分布均匀分布1、均匀分布的密度函数The density function, of uniformly distributed continuous random variable W, is f(w) = 1/(b−a),ifa ≤ w ≤ b;while f(w) = 0, for all other values of w.2、均匀分布的一些函数计算概率密度函数dunif(x, min = 0, max = 1, log = FALSE)计算累积密原创 2021-12-21 11:40:48 · 1519 阅读 · 0 评论 -
正态及标准正态分布
正态分布,也叫做高斯分布(Gaussian distribution)正态分布(normal distribution)1、描述的是连续型随机变量2、如果一个连续型随机变量的probability density function f(x)符合下面的等式,就说明这个随机变量符合正态分布。标准正态分布(standard normal distribution)如果一个正态分布的随机变量的均值为0, 方差为1,那么这个分布就是标准正态分布。标准正态分布的一些特性标准正态分布的例子把正态原创 2021-12-16 18:01:34 · 8119 阅读 · 0 评论 -
泊松随机变量及指数随机变量
泊松随机变量(poisson random variables)是离散型随机变量指数随机变量 (exponential random variables) 是连续型随机变量泊松随机变量该变量描述的是一个事件,在指定时间范围内,可能发生的次数(这里涉及到三个元素,分别是时间,事件,以及事件发生的可能次数)泊松分布(poisson distribution)1、描述在一定时间范围内,一个事件发生的次数的概率分布2、泊松分布的概率质量函数(probability mass function),期望及方原创 2021-12-16 11:22:13 · 6372 阅读 · 0 评论 -
连续型随机变量
连续型随机变量:continuous random variables即在一定区间内变量取值有无限个,或数值无法一一列举出来如下面的例子概率密度函数(probability density function, pdf):在数学理论中,一个连续型随机变量的概率密度函数,是一个描述这个随机变量落在某一个确定的取值附近的可能性的函数。概率密度函数的一些特性累积分布函数(cumulative distribution function, cdf):又叫做分布函数,是概率密度函数的积分,能完成描述一个原创 2021-12-16 09:36:37 · 5145 阅读 · 0 评论 -
常见离散型随机变量比较
1、X~Bern(p), 表明X的取值符合伯努利分布,只有1(成功)和0(失败)两种结果,其中成功的概率为P。伯努利分布的X期望值为P,方差为P(1-P);2、X~Geom(p),表明X是几何随机变量,符合几何分布,其中成功的概率为P, 该分布主要是探索n次独立尝试,直到第一次尝试成功的概率,每一次独立试验都是伯努利分布。几何分布的X期望值为1/P,方差为(1-P)/P^2;3、X~Bin(n,p),表明X是二项式随机变量,符合二项式分布,其中每次试验成功的概率为P,该分布主要是探索在n次独立尝试中,有原创 2021-12-07 08:09:25 · 2486 阅读 · 0 评论 -
二项式和负二项式随机变量
二项式随机变量(binomial random variables)二项式随机变量具有的特性1、n 次尝试2、每一次尝试的结果均是伯努利试验,结果为成功或失败3、每次尝试是独立的,也就是每次试验的结果不会影响其他试验的结果几何离散型随机变量,其实就是n次伯努利试验,期望值为np,方差为np(1-p)负二项式随机变量(Negative binomial random variables)负二项式随机变量与负二项式随机变量的相关性...原创 2021-12-07 07:17:29 · 1293 阅读 · 0 评论 -
期望及方差
Expectation and variables (期望与方差)问题:需要匹配多少个肾才最终可以匹配成功?如果是伯努利随机变量,那期望值为P如果是几何随机变量,期望值为1/P方差:V(X), 衡量随机变量与均值的距离。伯努利及几何随机变量的方差例子...原创 2021-12-06 07:44:04 · 752 阅读 · 0 评论 -
伯努利及几何离散型随机变量
Bernoulli and Geometric discrete random variables伯努利随机变量(Bernoulli rv),有时候叫做binary rv, 是指只有0或1的两种可能结果的任何随机变量几何随机变量(Geometric rv)如何判断一个变量是否是几何随机变量,需要达到以下几个条件...原创 2021-12-03 20:56:39 · 2726 阅读 · 0 评论 -
离散型随机变量-Discrete Random Variables
这里主要讲了离散型随机变量的概率质量函数以及累计分布函数随机变量(random variables, rv)有两大类:离散型(discrete)和连续型(continuous),对于前者,表示变量取值是有限个或者可数无穷个一般来说,以靠近字母表末端的大写字母来定义随机变量,如(X,Y),而随机变量的具体值为小写字母,如x,y概率质量函数(probability of mass function, pmf): 是离散随机变量在各特定取值上的概率具体例子累积分布函数(Cumulative Distr原创 2021-12-02 07:59:56 · 3647 阅读 · 0 评论 -
独立事件-independent event
学习整理笔记,为方便以后温习所用独立事件知道事件A及B,如果知道一个事件A发生,并不影响另一个事件B的发生的概率,那么事件A及B即为独立事件。对于独立事件A及B, A与B同时发生的概率等于两者单独发生的概率的乘积实例如下...原创 2021-11-15 08:04:04 · 1418 阅读 · 0 评论 -
Conditional Probability and Bayes Theorem
主要讲了条件概率,贝叶斯定理以及全概率定理条件概率(conditional probability)假如事件A,B来自于同一个样品空间,知道事件B发生的前提下,事件A发生的概率,即为条件概率P(A/B). The probability of event A given that event B occured.实例贝叶斯定理(Bayes Theorem)个人理解总结贝叶斯定理是由条件概率推理而来,两者求的都是条件概率P(A/B),方程式为除法,分母皆为P(B),不同的部分为分子的表达式原创 2021-11-15 07:48:12 · 617 阅读 · 0 评论 -
Probability Theory——模块1
概率对统计和数据科学都及其重要概率学的简单介绍**什么是统计学(Statistics)?高效利用数据来获取新知识的科学,获取和分析数据时需要不要违反道德约束。Population: 我们需要从中获取信息或者得出某些结论的客体。有时候population很大,我们无法收集所有的信息,只能从population中的一部分sample中收集信息,以概括population.什么是概率(probability)?研究一件事情发生的可能性。或者说,通过一些数学理论基础来研究事件的随机性和不确定性Expe原创 2021-11-10 12:05:18 · 287 阅读 · 0 评论