One way to serialize a binary tree is to use pre-order traversal. When we encounter a non-null node, we record the node's value. If it is a null node, we record using a sentinel value such as #
.
_9_ / \ 3 2 / \ / \ 4 1 # 6 / \ / \ / \ # # # # # #
For example, the above binary tree can be serialized to the string "9,3,4,#,#,1,#,#,2,#,6,#,#"
, where #
represents a null node.
Given a string of comma separated values, verify whether it is a correct preorder traversal serialization of a binary tree. Find an algorithm without reconstructing the tree.
Each comma separated value in the string must be either an integer or a character '#'
representing null
pointer.
You may assume that the input format is always valid, for example it could never contain two consecutive commas such as "1,,3"
.
Example 1:
"9,3,4,#,#,1,#,#,2,#,6,#,#"
Return true
Example 2:
"1,#"
Return false
Example 3:
"9,#,#,1"
Return false
Method1:
indegree and outdegree.
public class Solution {
public boolean isValidSerialization(String preorder) {
String[] nodes = preorder.split(",");
int diff =1;
for(String node:nodes){
if (--diff<0) return false;
if(!node.equals("#")) diff +=2;
}
return diff==0;
}
}
总结:利用出度和入度。关键在于二叉树出度和入度相等。初始化时要注意,diff为1,这是为了满足遍历根节点时其实未减少入度但减去了一个入度。
Method2:
Stack:
when you iterate through the preorder traversal string, for each char:
case 1: you see a number c, means you begin to expand a new tree rooted with c, you push it to stack
case 2.1: you see a #, while top of stack is a number, you know this # is a left null child, put it there as a mark for next coming node k to know it is being the right child.
case 2.2: you see a #, while top of stack is #, you know you meet this # as right null child, you now cancel the sub tree (rooted as t, for example) with these two-# children. But wait, after the cancellation, you continue to check top of stack is whether # or a number:
---- if a number, say u, you know you just cancelled a node t which is left child of u. You need to leave a # mark to the top of stack. So that the next node know it is a right child.
---- if a #, you know you just cancelled a tree whose root, t, is the right child of u. So you continue to cancel sub tree of u, and the process goes on and on.
public class Solution {
public boolean isValidSerialization(String preorder) {
// using a stack, scan left to right
// case 1: we see a number, just push it to the stack
// case 2: we see #, check if the top of stack is also #
// if so, pop #, pop the number in a while loop, until top of stack is not #
// if not, push it to stack
// in the end, check if stack size is 1, and stack top is #
if (preorder == null) {
return false;
}
Stack<String> st = new Stack<>();
String[] strs = preorder.split(",");
for (int pos = 0; pos < strs.length; pos++) {
String curr = strs[pos];
while (curr.equals("#") && !st.isEmpty() && st.peek().equals(curr)) {
st.pop();
if (st.isEmpty()) {
return false;
}
st.pop();
}
st.push(curr);
}
return st.size() == 1 && st.peek().equals("#");
}
}