神经网络训练技巧

本文探讨了神经网络训练的一些关键技巧,包括学习速率的调整、正则项的选择与微调、mini-batch大小的影响、防止过拟合的方法、参数初始化策略、损失函数类型、优化器的选择以及激活函数的适用场景。这些策略对于提高模型性能和训练效率至关重要。
摘要由CSDN通过智能技术生成

1、学习速率。首先设学习速率为一个较大的值,确保training  cost在不断下降。当accuracyy在n个epoch内不再增加时,使得学习速率减小一半。重复迭代,直到学习速率变成原来的1/1024。


2、学习速率要根据训练cost调。但是网络层数和神经元数目,mini-batch size要根据验证集的acc调。


3、关于正则项系数。可以先设为0,选好learning rate,再将正则系数增大或者缩小十倍粗调。大概确定数量级后,再微调。


4、关于mini-batch,如果太小,和On-line learning很接近,加速效果可能不明显。如果太大,权重更新不够频繁,优化过程较长。因此,可以画出验证集准确率和真正时间的曲线,确定一个acceptable mini-batch。


5、避免过拟合的方法有很多:early stopping、数据集扩增(Data augmentation)、正则化(Regularization)包括L1、L2(L2 regularization也叫weight decay),dropout。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值