深度学习--win10系统下软件安装以及配置(Anaconda、pycharm、以及PytorchGPU(CUDA11.1)、tensorflow)

 

前言

在学习深度学习之前,需要配置好电脑上的一些环境,只有一次性将环境配置好了,后面学习也就省事了,俗话说:‘工欲善其事必先利其器’。

一、安装Anaconda及环境配置

1.Anaconda安装

Anaconda相当于将python里面的包都已经下载好了,这样就可以省去由于版本问题导致使用python时,版本不一致导致的问题,所以这里建议大家安装Anaconda。我们直接在官网下载Anaconda。

下载地址

下载自己所需要的版本,Anaconda下载完成后,然后进行一系列安装(建议安装在非c盘里),记住自己安装的路径。

2.Anaconda环境配置

找到自己Anaconda安装目录,找到里面的Scripts,复制路径

然后,右键“我的电脑”>选择“属性”>高级系统设置>环境变量

然后在系统环境变量下,找到path,然后点击新建路径,粘贴刚刚复制的路径。

分别添加:F:\Ananda3,F:\Ananda3\bin,F:\Ananda3\Scripts这三个路径即可。

验证Anaconda环境变量是否配置好 ,开始 → Anaconda3(64-bit)→ 右键点击Anaconda Prompt → 以管理员身份运行”,在Anaconda Prompt中输入conda list,可以查看已经安装的包名和版本号。若正常显示,则安装成功。

或者直接在运行命令窗口打  conda --version,若显示版本则安装成功。

二、安装pycharm及配置解释器

1.简介

PyCharm是一种Python IDE,其带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如, 调试、语法高亮、Project管理、代码跳转、智能提示、自动完成、单元测试、版本控制等等。 此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。

2.下载并安装pycharm

我们直接在官网下载pycharm

pycharm下载地址

下载右边的Community版即可(Community版对于普通学习者已经够用),下载完成之后,一顿傻瓜式安装(建议还是在非c盘安装)即可。

3.配置python解释器

先新建一个项目文件,点击File→New Project→Location(新建自己的项目文件名称),然后选择previously configured interpreter→添加python解释器

然后确定即可。

三、安装Pytorch+cuDNN(CPU版或者GPU版)

1.简介

PyTorch是一个Python的开源机器学习库。 它用于自然语言处理等应用程序。 它最初由Facebook人工智能研究小组开发,而优步的Pyro软件则用于概率编程。 最初,PyTorch由Hugh Perkins开发,作为基于Torch框架的LusJIT的Python包装器。

2.查看自己电脑是否有显卡

若电脑没有显卡,只能安装CPU版。

若电脑有显卡,可以安装CPU和GPU两个版本,建议安装GPU版,在跑代码的时候,GPU版比CPU版快很多。

查看是否含有显卡(可以在网上搜索自己的设备型号查看)

要是在设备不支持使用GPU版时,想使用GPU,可以使用colab云,其教程可以参考我上一篇博文:安利一个白嫖云GPU使用——colab使用

3.安装Pytorch(CPU版)

进入pytorch官网(pytorch网址),选择Windows→Conda→python→CPU

复制  Run this Command里面的内容(

conda install pytorch torchvision torchaudio cpuonly -c pytorch

),然后回车及可安装pytorch(cpu版)。

4.安装pytorch(GPU版)

(1)下载驱动,直接去NVIDIA官网下载     NVIDIA下载地址

根据你的GPU型号以及操作信息选择对应的驱动,注意CUDA Toolkit11版的当前可选的只有11.0和11.2。

(2)安装NVIDIA,并验证

在命令行输入nvidia-smi,如果没有错误及驱动已经安装完成

(3)安装cuda-toolkit

CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题,从而能通过程序控制底层的硬件进行计算。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C/C++/C++11语言来为CUDA架构编写程序。

在CUDA官网下载即可(CUDA下载网址),选择自己需要的版本,博主这里下载的是11.1版本的。下载CUDA需要创建账号。

下载安装之后,一般默认安装路径为:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1

(4)配置CUDA环境变量

在系统环境变量中加入图片所示

然后在系统变量的path里面加入以下路径

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\libnvvp

%CUDA_LIB_PATH%

%CUDA_BIN_PATH%

%CUDA_SDK_LIB_PATH%

%CUDA_SDK_BIN_PATH%

(5)验证CUDA是否配置好

在命令行输入nvidia-smi,右上角有一个  CUDA  Version如果有显示则安装成功

(6)cuDNN安装

NVIDIA cuDNN是用于深度神经网络的GPU加速库。

cuDNN安装比较容易,只要在网上下载和CUDA版本相对应的cuDNN,然后解压,把文件复制到相应文件夹里面即可。cuDNN下载地址(这里和下载CUDA一样需要账号)

然后解压将CUDA文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit进行替换。

(7)安装pytorch(GPU版)

此时安装前面六步之后关一下机,更新一下系统路径

在线安装

进入pytorch官网(pytorch网址),选择Windows→pip→python→CUDA 11.1

复制  Run this Command里面的内容(

pip3 install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio===0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

),到运行命令窗口,然后回车及可安装pytorch(gpu版)

(8)检验是否安装好pytorch

import torch    
a = torch.Tensor([1.])    
a.cuda()   
from torch.backends import cudnn 
cudnn.is_acceptable(a.cuda())    

四、安装tensorflow

1.简介

ensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。 TensorFlow可被用于语音识别或图像识别等多项机器学习和深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。

2.安装

使用官方网站安装命令

pip3 install --user --upgrade tensorflow  # install in $HOME

有可能出现错误,是因为网速原因。若出现错误,才用下述方法安装

pip install --upgrade --ignore-installed tensorflow

剩下的就是慢慢的等待安装的过程啦

温馨提示:如果用这个命令之后,提示你需要升级你的pip的版本,直接更新pip版本就可以了


总结

当你看到这里,恭喜你应该已经成功安装好相应的库了。

不要怕麻烦,在安装过程中,也会学到很多知识。

 

自编译tensorflow: 1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.支持mkl,无MPI; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]:/home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: hp@dla:~/work/ts_compile/tensorflow$ bazel build --config=opt --config=mkl --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值