1、概述
在tensorflow中的输入数据会有很多形式一般有一下几种形式
- 数据以tf.constant的实行直接嵌入到graph中。在这种情况下一般数据量不会很大,应用场景也比较单一
- 以tf.placeholder与feed_dic的形式存在
在这种场景下,往往也需要将数据全部读入到内存,转换成tf的张量集合然后再进行处理。在进行大量数据处理时显得的力不从心。
- 以pipeline的方式从文件中直接读取数据并且采用多线程异步形式来解决IO的瓶颈。
本章内容主要讨论第三种方式。
2、tf.data API
tensorflow的tf.data类可以让我们使用简单的可重用的代码来构建复杂的输入管道。并将数据构建、打乱数据、生成批量数据的功能,整合其中。同时tf.data提供了文本文件输入模型与图像输入模型用于处理不同形式的输入数据。
tf.data引入了2个新的概念
1、tf.data.Dataset
tf.data.Dataset表示一个元素序列,其中每个元素包含一个或多个张量,例如,在图像流水线中,元素可以是单个训练示例,其中一对张量表示图像数据和标签。创建数据集有两种不同的方法:
- 从数据集中直接创建一个dataset对象
- 从一个已有的dataset对象转换一个新的dataset对象
2、tf.data.Iterator
使用该api可以构造一个迭代器从Dataset中提取数据。我们可以使用Iterator.get_next()产生Dataset执行时的下一个元素,并且通常充当输入管道代码和模型之间的接口。最简单的迭代器是一个“一次性迭代器”,它与一个特定的Dataset迭代器相关联并迭代一次。如果需要构造更为复杂的迭代器可以使用Iterator