参考
【1】https://zhuanlan.zhihu.com/p/41255090 理论
【2】https://zhuanlan.zhihu.com/p/272767300 理论
【3】https://zhuanlan.zhihu.com/p/273566106 实战
【4】https://zhuanlan.zhihu.com/p/286298001 实战
【5】https://www.jianshu.com/p/65cfb475584a 实战
【6】https://pytorch.apachecn.org/docs/1.4/31.html 实战
【7】https://heroinlin.github.io/2018/08/15/Pytorch/Pytorch_export_onnx/ 踩坑记录
【8】https://blog.csdn.net/SilentOB/article/details/102863944 理论
【9】https://github.com/onnx/onnx/blob/master/docs/PythonAPIOverview.md#polishing-the-model 实战
【10】https://blog.csdn.net/ZM_Yang/article/details/103977679 onnxruntime源码解析
【11】https://pytorch.apachecn.org/docs/1.0/onnx.html 记录了ONNX支持的运算符
简介
Open Neural Network Exchange(ONNX,开放神经网络交换)格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转移。
目前官方支持加载ONNX模型并进行推理的深度学习框架有: Caffe2, PyTorch, MXNet,ML.NET,TensorRT 和 Microsoft