图的最短路径:Dijkstra、Bellman-Ford、SPFA、Floyd

46 篇文章 0 订阅
12 篇文章 0 订阅

图的表示方法

 

最常用的表示图的方法是邻接矩阵与邻接表。

邻接矩阵表示法

设G是一个有n(n>0)个顶点的图,V(G)={v1, v2, …, vn},则邻接矩阵AG是一个n阶二维矩阵。在该矩阵中,如果vi至vj有一条边,则(i, j)项的值为1,否则为0,即:

 
邻接矩阵的实现很简单:

int edge[n][n]={0};

for(...){
    ...
    //无向图的邻接矩阵表示
    edge[node1][node2]=1;
    edge[node2][node1]=1;
}

邻接表表示法

设G是一个有n(n>0)个顶点的图,V(G)={v1, v2, …, vn}。在邻接表中,每个顶点v都对应着一个链表,该链表的每个节点都包含一个顶点u,且(v, u)∈E(G)。因为图中有n个顶点,所以可以利用一个长度为n的数组A,A(i)指向第i个顶点对应的链表的第一个节点,链表由顶点vi的全部邻接顶点组成。

实现邻接表时,可以不用链表,而是用vector数组的形式。

vector<int> adj[MAX];
for(int i=1;i<=n-1;i++) {
    cin>>a>>b;
    //构建无向图的邻接表
    adj[a].push_back(b);
    adj[b].push_back(a);
        }

其中,adj[i]是一个vector,它记录了结点i连通的所有结点。 

链表的实现方法:

#include<bits/stdc++.h>
using namespace std;
const int MAX_N=110;
const int MAX_M=110;
struct edge{
	int v,next;
}E[MAX_M];
int p[MAX_N],eid;
void init()
{
    memset(p,-1,sizeof(p));
    eid=0;
}
void insert(int u,int v)
{
    E[eid].v=v;
    E[eid].next=p[u];
    p[u]=eid++;
}
int main()
{
    init();
    int n,m;
    cin>>n>>m;
    int a,x,y;
    for(int i=1;i<=m;i++)
    {
        cin>>a>>x>>y;
        insert(x,y);
        insert(y,x);
    }
    for(int i=0;i<n;i++)
    {
        cout<<i<<":";
        for(int j=p[i];j+1;j=E[j].next)
        {
            cout<<" "<<E[j].v;
        }
        cout<<endl;
    }
    return 0;
}

Dijkstra算法

Dijkstra算法算是贪心思想实现的,首先把起点到所有点的距离存下来找个最短的,然后松弛一次再找出最短的,所谓的松弛操作就是,遍历一遍看通过刚刚找到的距离最短的点作为中转站会不会更近,如果更近了就更新距离,这样把所有的点找遍之后就存下了起点到其他所有点的最短距离。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f
 
using namespace std;
 
int map[1005][1005];
 
int vis[1005],dis[1005];
int n,m;//n个点,m条边
 
void Init ()
{
	memset(map,Inf,sizeof(map));
	for(int i=1;i<=n;i++)
	{
		map[i][i]=0;
	}
}
 
void Getmap()
{
	int u,v,w;
    for(int t=1;t<=m;t++)
	{
	  	scanf("%d%d%d",&u,&v,&w);
	  	if(map[u][v]>w)
		  {
		  map[u][v]=w;
		  map[v][u]=w;
	      }
	}	
	
}
 
void Dijkstra(int u)
{
	memset(vis,0,sizeof(vis));
	for(int t=1;t<=n;t++)
	{
		dis[t]=map[u][t];
	}
	vis[u]=1;
	for(int t=1;t<n;t++)
	{
		int minn=Inf,temp;
		for(int i=1;i<=n;i++)
		{
			if(!vis[i]&&dis[i]<minn)
			{
				minn=dis[i];
				temp=i;
			}
		}
		vis[temp]=1;
		for(int i=1;i<=n;i++)
		{
			if(map[temp][i]+dis[temp]<dis[i])
			{
				dis[i]=map[temp][i]+dis[temp];
			}
		}
	}
	
}
 
int main()
{
	
	scanf("%d%d",&m,&n);
	Init();
	Getmap();
	Dijkstra(n);
	printf("%d\n",dis[1]);
	
	
	return 0;
}

Bellman-Ford算法思想

Dijkstra算法的局限性

像上图,如果用dijkstra算法的话就会出错,因为如果从1开始,第一步dist[2] = 7, dist[3] = 5;在其中找出最小的边是dist[3] = 5;然后更新dist[2] = 0,最终得到dist[2] = 0,dist[3] = 5,而实际上dist[3] = 2;所以如果图中含有负权值,dijkstra失效

有些图结构中会存在负权边,用于表达通过某条途径可以降低总消耗,在有向图中,负权边不一定会形成负权回路,所以在一些计算最短路径算法中,负权边也可以计算出最短路径;在无向图中,负权边就意味着负权回路,所以无向图中不能存在负权边

BF可以解决有负权边的问题,但不能解决含有负环的问题

Bellman - ford算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。

适用前提:没有负环(或称为负权值回路),因为有负环的话距离为负无穷。

构造一个最短路径长度数组序列dist1[u] dist2[u]...distn-1[u],其中:
dist1[u]为从源点v0出发到终点u的只经过一条边的最短路径长度,并有dist1[u] = Edge[v0][u]

dist2[u]为从源点v0出发最多经过不构成负权值回路的两条边到终点u的最短路径长度

dist3[u]为从源点v0出发最多经过不构成负权值回路的三条边到终点u的最短路径长度

................

distn-1[u]为从源点v0出发最多经过不构成负权值回路的n-1条边到终点u的最短路径长度

算法最终目的是计算出distn-1[u],即为源点到顶点u的最短路径长度

初始:dist1[u] = Edge[v0][u]

递推:distk[u] = min(distk-1[u], min{distk-1[j] + Edge[j][u]})(松弛操作,迭代n-2次)

本质思想:
在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再减小,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) < distk-1[v],,那么distk[v] = distk-1[u] + w(u, v),这个称为一次松弛

所以递推公式可改为:

初始:dist0[u] = INF dist0[v0] = 0(v0是源点)

递推:对于每条边(u, v) distk[v] = min(distk-1[v], distk-1[u] + w(u, v))(松弛操作,迭代n-1次)

如果迭代n-1次后,再次迭代,如果此时还有dist会更新,说明存在负环。

 无负环的时候,迭代更新次数最多为n-1次,所以设置一个更新变量可以在不更新的时候直接跳出循环

拓展:

Bellman-Ford算法还能用来求最长路或者判断正环,思路是dist数组含义是从原点出发到其他每个顶点的最长路径的长度,初始时,各个顶点dist为0,在从distk-1[u]递推到distk[u]的时候,Bellman-Ford算法的本质是对每条边<u, v>进行判断:设边<u, v>的权值为w(u, v),如果边<u, v>的引入会使得distk-1[v]的值再增加,就要修改distk-1[v],即:如果distk-1[u] + w(u, v) > distk-1[v],,那么distk[v] = distk-1[u] + w(u, v)。例题:POJ-1860

4.代码实现:时间复杂度O(nm)(n为点数,m为边数)

输入:

7 10
0 1 6
0 2 5
0 3 5
1 4 -1
2 1 -2
2 4 1
3 2 -2
3 5 -1
4 6 3
5 6 3

输出:

从0到1距离是: 1   0->3->2->1
从0到2距离是: 3   0->3->2
从0到3距离是: 5   0->3
从0到4距离是: 0   0->3->2->1->4
从0到5距离是: 4   0->3->5
从0到6距离是: 3   0->3->2->1->4->6
不存在负环

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<sstream>
using namespace std;
typedef long long ll;
const int maxn = 1000 + 10;
const int INF = 1 << 25;
int T, n, m, cases;
struct edge
{
    int u, v, w;
};
edge a[maxn];
int path[maxn], d[maxn];
bool Bellman(int v0)
{
    for(int i = 0; i < n; i++)d[i] = INF, path[i] = -1;
    d[v0] = 0;
    for(int i = 0; i < n; i++)//迭代n次,如果第n次还在更新,说明有负环
    {
        bool update = 0;
        for(int j = 0; j < m; j++)
        {
            int x = a[j].u, y = a[j].v;
            //cout<<x<<" "<<y<<" "<<a[j].w<<endl;
            if(d[x] < INF && d[x] + a[j].w < d[y])
            {
                d[y] = d[x] + a[j].w;
                path[y] = x;
                update = 1;
                if(i == n - 1)//说明第n次还在更新
                {
                    return true;//返回真,真的存在负环
                }
            }
        }
        if(!update)break;//如果没更新了,说明已经松弛完毕
    }
    for(int i = 0; i < n; i++)
    {
        if(i == v0)continue;
        printf("从%d到%d距离是:%2d   ", v0, i, d[i]);
        stack<int>q;
        int x = i;
        while(path[x] != -1)
        {
            q.push(x);
            x = path[x];
        }
        cout<<v0;
        while(!q.empty())
        {
            cout<<"->"<<q.top();
            q.pop();
        }
        cout<<endl;
    }
    return false;
}
int main()
{
    cin >> n >> m;
    for(int i = 0; i < m; i++)cin >> a[i].u >> a[i].v >> a[i].w;
    if(Bellman(0))cout<<"存在负环"<<endl;
    else cout<<"不存在负环"<<endl;
    return 0;
}

SPFA算法:

 

 

bool inq[MAX_N];
int d[MAX_N];  // 如果到顶点 i 的距离是 0x3f3f3f3f,则说明不存在源点到 i 的最短路
void spfa(int s) {
    memset(inq, 0, sizeof(inq));
    memset(d, 0x3f, sizeof(d));
    d[s] = 0;
    inq[s] = true;
    queue<int> q;
    q.push(s);
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        inq[u] = false;
        for (int i = p[u]; i != -1; i = e[i].next) {
            int v = e[i].v;
            if (d[u] + e[i].w < d[v]) {
                d[v] = d[u] + e[i].w;
                if (!inq[v]) {
                    q.push(v);
                    inq[v] = true;
                }
            }
        }
    }
}

Floyd算法

 

 

#include <iostream>
using namespace std;
const int inf = 0x3f3f3f3f;
int G[110][110];
int n;

void floyd(){
    for(int k = 0;k<n;k++){
        for(int i=0;i<n;i++){
            for(int j=0;j<n;j++){
                if(G[i][k] + G[k][j] < G[i][j]){
                    G[i][j] = G[i][k] + G[k][j]; 
                }
            }
        }
    }
}


int main() {
	cin>>n;
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            cin>>G[i][j];
        }
    }
    floyd();
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            cout<<G[i][j]<<" ";
        }
        cout<<endl;
    }
    return 0;
}

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值