python ——Random库

一 .Random库简介

random库是使用随机数的python标准库,所谓标准库,即可以直接使用的,无需使用pip下载。(安装python库,打开cmd,输入:pip install 库名)

使用/调用random库:import random

random() 方法返回随机生成的一个实数,它在[0,1)范围内。

二. 常用函数

首先我们先了解一下随机数是如何产生的,python中的随机数通过随机种子产生,也就是说随机数的产生是有规律的,这就规律是有电脑 产生的随机种子确定的。
给定的种子相同,无论是每一个数还是数之间的关系都是确定的。也就是说随机种子确定了随机数的产生。

  1. seed (a = None):初始化给定的随机种子,默认为当前系统的时间。
  2. 2.random():生成一个【0.0,1.0)之间的随机小数
  3. randint():randint(a,b):生成一个[a,b]之间的整数
  4. randrange():randrange(m,n[,k]):生成一个[m,n)之间步长的随机数
  5. .getrandbits():getrandbits(k):生成一个k比特长的整数
  6. .uniform():uniform(a,b):生成一个[a,b]之间的随机小数
  7. 7.choice():choice(seq):从序列seq中随机选择一个元素
  8. 8.shuffle():shuffle(seq):将序列seq中元素随机排列,返回打乱后的序列

三.一个小栗子:

做为 Apple Store App 独立开发者,你要搞限时促销,为你的应用生成激活码(或者优惠券),使用 Python 如何生成 200 个激活码(或者优惠券)?

import random
import string

def produce(length):
    chars = string.ascii_letters+string.digits // 产生一个含有所有字母和数字的序列
    return ''.join(random.choice(chars) for i in range(length))
for i in range(200):
    L = produce(20)
    print(L)

Kmeans聚类算法是一种无监督学习算法,用于将数据集划分为不同的簇。它是一个迭代算法,通过计算每个数据点与簇中心的距离,将数据点分配到最近的簇中心。然后,根据分配的数据点更新簇中心。重复这个过程,直到簇中心不再变化或达到预设的迭代次数。 下面是一个使用Python实现Kmeans聚类算法的示例: ``` python import numpy as np import matplotlib.pyplot as plt # 生成随机数据 np.random.seed(0) X = np.random.randn(100, 2) # 初始化K个簇中心 K = 3 centers = X[np.random.choice(len(X), K, replace=False)] # 迭代聚类 for i in range(10): # 计算每个数据点最近的簇中心 distances = np.linalg.norm(X[:, np.newaxis, :] - centers, axis=2) labels = np.argmin(distances, axis=1) # 更新簇中心 for k in range(K): centers[k] = np.mean(X[labels == k], axis=0) # 可视化聚类结果 colors = ['r', 'g', 'b'] for k in range(K): plt.scatter(X[labels == k, 0], X[labels == k, 1], c=colors[k]) plt.scatter(centers[:, 0], centers[:, 1], marker='*', s=200, c='#050505') plt.show() ``` 在这个例子中,我们生成了一个随机数据集,然后初始化了3个簇中心。然后,我们执行10次迭代,计算每个数据点最近的簇中心,并根据分配的数据点更新簇中心。最后,我们可视化聚类结果,其中每个簇用不同的颜色表示,簇中心用星号表示。 Kmeans聚类算法是一种简单有效的聚类算法,但它有一些缺点。例如,它需要预先指定簇的数量K,这可能不是很容易确定。此外,它对初始簇中心的选择很敏感,可能会导致陷入局部最优解。因此,在实际应用中,需要对它进行改进,例如Kmeans++算法和层次聚类算法等。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

おもいね

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值