题目0144-最大利润

该博客探讨了一位商人如何在有限的库存和价格波动的情况下,通过买卖商品获得最大利润的问题。商人面对的商品数量、销售天数和每日价格都会影响最终的利润。博客提供了输入描述、输出描述以及示例,并给出了用Java实现的参考解题方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大利润

题目描述

商人经营一家店铺,有number种商品,
由于仓库限制每件商品的最大持有数量是item[index]
每种商品的价格是item-price[item_index][day]
通过对商品的买进和卖出获取利润
请给出商人在days天内能获取的最大的利润
注:同一件商品可以反复买进和卖出

输入描述

3 第一行输入商品的数量number
3 第二行输入商品售货天数 days
4 5 6 第三行输入仓库限制每件商品的最大持有数量是item[index]
1 2 3 第一件商品每天的价格
4 3 2 第二件商品每天的价格
1 5 3 第三件商品每天的价格

输出描述

输出商人在这段时间内的最大利润
例如:32

示例一

输入

3
3
4 5 6
1 2 3
4 3 2
1 5 2

输出

<think>好的,用户需要关于软考中求最大利润题目的解法和练习。首先,我得确定这类题目通常的考点和解题方法。根据软考的常见题型,最大利润问题可能涉及动态规划、贪心算法或者数学建模。 先回忆相关的知识点。比如动态规划常用于最优化问题,像是背包问题或是资源分配,这可能和最大利润有关。用户提到的引用[4]中哈夫曼树的WPL最小化原则,虽然和利润问题不直接相关,但优化思想可能有相似之处,比如贪心策略的选择。 接下来需要整理解题步骤。动态规划解这类问题一般分四步:定义状态、建立转移方程、初始化、计算最优解。例如,假设题目是给定不同项目的投资额和利润,求最大利润,可能需要用二维数组dp[i][j]表示前i个项目在j资金下的最大利润。 然后考虑示例题,比如经典的买卖股票问题,可以使用贪心策略在低价买高价卖,或者动态规划处理有交易次数限制的情况。比如力扣中的题目,这些可以作为练习题推荐给用户。 还要注意代码实现的正确性,比如Python中的动态规划实现需要正确管理状态转移。同时,结合软考真题,可能需要考虑时间复杂度和空间优化,比如滚动数组。 最后,根据用户提供的引用,特别是引用[1]中的系统分析师真题,可能涉及案例分析,需要将理论与实际应用结合。因此,在练习题中加入实际案例会有帮助,比如引用中的扩展练习[^2]。 总结步骤:分析题目类型,确定算法(动态规划/贪心),分步解题,提供示例和练习,并引用相关资料。需要确保LaTeX格式正确,如状态转移方程用$$...$$,变量用$...$。同时检查是否有相关引用支持,比如引用[3]提到通过率,可能提醒用户选择合适备考策略。</think>### 软考中求最大利润问题的解法与练习 #### 一、问题类型与核心思路 软考中求最大利润题目通常属于**动态规划**或**贪心算法**的应用范畴,常见于系统分析师考试的综合知识与案例分析部分。核心思路如下: 1. **动态规划**:适用于利润计算涉及多阶段决策且具有重叠子问题性质的情况,例如资源分配、投资组合优化。 2. **贪心算法**:适用于局部最优可推导全局最优的场景,例如部分背包问题、股票买卖问题。 #### 二、动态规划解法示例(以投资利润为例) **题目**:给定$n$个项目,每个项目投资$x_i$万元可获利润$p_i$万元,总预算为$B$万元,求最大利润。 **解题步骤**: 1. **定义状态**:设$dp[i][j]$表示前$i$个项目在预算$j$时的最大利润。 2. **状态转移方程**: $$ dp[i][j] = \max(dp[i-1][j], \ dp[i-1][j-x_i] + p_i) \quad (j \geq x_i) $$ 3. **初始化**:$dp[0][j]=0$(无项目时利润为0)。 4. **计算结果**:最终结果为$dp[n][B]$。 **Python实现**: ```python def max_profit(projects, budget): n = len(projects) dp = [[0] * (budget + 1) for _ in range(n + 1)] for i in range(1, n + 1): x, p = projects[i-1] for j in range(budget + 1): if j >= x: dp[i][j] = max(dp[i-1][j], dp[i-1][j-x] + p) else: dp[i][j] = dp[i-1][j] return dp[n][budget] ``` #### 三、贪心算法示例(股票买卖问题) **题目**:给定股票每日价格,允许多次交易,求最大利润[^2]。 **贪心策略**:所有上涨日都进行买卖。 ```python def max_profit(prices): profit = 0 for i in range(1, len(prices)): if prices[i] > prices[i-1]: profit += prices[i] - prices[i-1] return profit ``` #### 四、练习题库 1. **基础题** - 某公司有4个项目,投资需求为$[2,3,4,5]$万元,对应利润$[1,2,5,6]$万元,预算为$8$万元,求最大利润。(答案:9万元) 2. **进阶题(含限制条件)** - 股票交易含手续费:每次卖出需支付手续费$c$,求最大利润[^1]。 **状态方程**: $$ dp[i][0] = \max(dp[i-1][0], dp[i-1][1] + price[i] - c) \\ dp[i][1] = \max(dp[i-1][1], dp[i-1][0] - price[i]) $$ 3. **案例分析题** 参考软考真题(引用[1])中的资源分配场景,结合成本、风险等多目标进行利润优化。 #### 五、备考建议 1. 重点掌握**动态规划模板**,尤其是背包问题的变种。 2. 结合软考真题(引用[1][2])练习时间复杂度和空间优化技巧,例如滚动数组。 3. 注意区分贪心与动态规划的适用场景:若问题无后效性且局部最优可推导全局最优,则优先考虑贪心算法[^4]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosCloud2013

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值