何恺明的学术引用量突破50万!

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【计算机视觉和论文投稿】交流群

恭喜!何恺明(Kaiming He)谷歌学术被引用量正式突破50万!是 Computer Vision 领域被引用量最高的人!

b5c5386961c62ac731f0407ff4a41ab0.png

而在(谷歌学术上)最大的AI领域Machine Learning,何恺明引用量排名第三!仅次于Geoffrey Hinton、Yoshua Bengio两位巨佬!PS:这两位老爷子的引用量均突破70万,太恐怖了!

66c608bd2294fd0386dcfb7f9a83a028.png

截止2023年11月23日,何恺明有10篇论文的引用量均突破10000!

  • ResNet 在AI领域几乎无人不识(预计2024年初,被引用量将破20万!),后面著名的Transformer,AlphaGo系列也用到了该残差学习;

  • Faster R-CNN、Mask R-CNN 做检测、分割的同学应该都知道;

  • MoCo 系列更是助力自监督学习浪潮;

  • 最近的一作工作MAE已被广泛用于视觉各个领域(图像/视频/3D等)。 

限于篇幅,这里浅浅地回顾一下大佬的代表性工作和部分荣誉:

415cf43402535c4d55e35ced13b7c69f.png

2009 CVPR Best Paper 

  • Single Image Haze Removal Using Dark Channel Prior

2016 CVPR Best Paper 

  • ResNet——Deep Residual Learning for Image Recognition

2017 ICCV Best Paper (Marr Prize)

  • Mask R-CNN

2017 ICCV Best Student Paper 

  • Focal Loss for Dense Object Detection

2018 ECCV Best Paper Honorable Mention 

  • Group Normalization

2019 ICCV Best Paper Nominee

  • Deep Hough Voting for 3D Object Detection in Point Clouds

2020 CVPR Best Paper Nominee

  • Momentum Contrast for Unsupervised Visual Representation Learning

2021 CVPR Best Paper Honorable Mention

  • Exploring Simple Siamese Representation Learning

2022 CVPR Best Paper Nominee

  • Masked Autoencoders Are Scalable Vision Learners

最后再次恭喜何恺明!也期待2024年,何恺明入职MIT后续的新工作和新学生!

 
 

CVPR / ICCV 2023论文和代码下载

 
 

后台回复:CVPR2023,即可下载CVPR 2023论文和代码开源的论文合集

后台回复:ICCV2023,即可下载ICCV 2023论文和代码开源的论文合集
计算机视觉和Transformer交流群成立
扫描下方二维码,或者添加微信:CVer444,即可添加CVer小助手微信,便可申请加入CVer-计算机视觉或者Transformer 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF等。
一定要备注:研究方向+地点+学校/公司+昵称(如目标检测或者Transformer+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer444,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集近万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看0b951211dd614330dd123884cf4d3140.gif
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值