顶刊TPAMI 2024!北大提出实用、紧致的智能图像压缩感知技术

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【Mamba/多模态/扩散】交流群

添加微信:CVer2233,助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪必备!

c3ef8f694b143b3a2a0ed4cca4a1eb94.png

一、论文信息

20066270117f351de74bc9830fa1d783.png

  • 论文标题: Practical Compact Deep Compressed Sensing(实用、紧致的深度压缩感知)

  • 论文作者: Bin Chen(陈斌) and Jian Zhang†(张健)(†通讯作者)

  • 作者单位: 北京大学信息工程学院

  • 发表刊物: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)

  • 发表时间: 2024年11月22日

  • 正式版本:

    https://ieeexplore.ieee.org/document/10763443

  • ArXiv版本:

    https://arxiv.org/abs/2411.13081

  • 开源代码:

    https://github.com/Guaishou74851/PCNet

二、任务背景

压缩感知(Compressed Sensing, CS)是一种信号降采样技术,可大幅节省图像获取成本。CS的核心思想是 “无需完整记录图像信息,通过计算即可还原目标图像”。CS的典型应用包括:

  • 降低相机成本: 利用廉价设备就能拍摄出高质量图像;

  • 加速医疗成像: 将核磁共振成像(MRI)时间从40分钟缩短至10分钟内,减少被检查者的不适;

  • 探索未知世界,助力科学研究: 将“看不见”事物变为“看得见”,如观测细胞活动等转瞬即逝的微观现象,以及通过分布式射电望远镜观测银河系中心的黑洞。

CS的数学模型可表示为 ,其中 是原始图像, 是采样矩阵, 是观测值。定义压缩采样率为 。

CS面临两大核心问题:

  1. 如何设计采样矩阵,从而尽可能多地保留图像信息?

  2. 如何设计高效的重建算法,从而精准复原图像内容?

然而,现有CS方法仍存在两方面局限:

  1. 采样矩阵信息保留能力不足: 将图像切块,逐块采样,导致观测值信息量有限;

  2. 重建算法的计算开销过大、复原精度有限。

三、主要贡献

本工作提出了一种实用、紧致的图像压缩感知网络PCNet,具有如下创新点:

  1. 一种新型压缩采样矩阵,能够融合图像的局部与全局特征,从而提高信息保留能力。具体采样过程分两步:首先,用一个小型卷积网络对图像滤波;其次,使用全局矩阵对滤波结果降维,生成压缩观测值;

  2. 一种新型图像重建网络,将传统近端梯度下降(Proximal Gradient Descent,PGD)算法与深度神经网络有机结合,利用先进模块设计显著提升重建精度。

d2da1385e0d1478d3e7abd3b5779c243.png

图1:提出的实用、紧致的压缩感知网络PCNet。

c4b6edde2afaf8199578678da2f385d6.png

图2:提出的协同采样算子。

四、实验结果

在 Set11、CBSD68、Urban100 和 DIV2K 等基准数据集上,PCNet 的性能显著优于其他方法,特别是在高分辨率(2K、4K、8K)成像任务中。此外,其采样矩阵可拓展至量化CS和自监督CS任务,展现了良好的通用性。

4c058ffcf75cb895a26ecdf2608af194.png

c412ed7a1a88539f44a7afdb7a99ebb6.png

图3:方法与其他CS方法的对比结果。

更多细节、实验结果与理论分析请参阅论文。

五、实验室简介

视觉信息智能学习实验室(VILLA)由北京大学信息工程学院张健助理教授于2019年创立并负责,主要围绕“智能可控图像生成”这一前沿领域,深入开展高效图像重建、可控图像生成和精准图像编辑三个关键方向的研究。张健老师带领VILLA团队已在Nature子刊Communications Engineering、IEEE SPM、TPAMI、TIP、IJCV、NeurIPS、ICLR、CVPR、ICCV和ECCV等高水平国际期刊和会议上发表论文100余篇,其中近三年,以第一作者/通讯作者发表CCF A类论文40余篇。张健老师谷歌学术引用1万余次,h-index值为49(单篇一作最高引用1200余次),获得北大青年教师教学比赛一等奖、国际期刊/会议最佳论文奖五次,主持国家科技重大专项课题、国自然重点项目课题、国自然面上以及与字节/华为/OPPO/创维/兔展等知名企业学术合作项目10余项。

在高效图像重建方面,张健老师团队的代表性成果包括优化启发式深度展开重建网络ISTA-Net、COAST、ISTA-Net++,联合学习采样矩阵压缩计算成像方法OPINE-Net、PUERT、CASNet、HerosNet、PCA-CASSI,基于信息流增强机制的高通量广义优化启发式深度展开重建网络HiTDUN、SODAS-Net、MAPUN、DGUNet、SCI3D、PRL、OCTUF、D3C2-Net,以及无需真值的自监督图像重建方法SCNet。团队还提出了基于自适应路径选择机制的动态重建网络DPC-DUN和用于单像素显微荧光计算成像的深度压缩共聚焦显微镜DCCM,以及生成式图像复原方法Panini-Net、PDN、DEAR-GAN、DDNM,受邀在信号处理领域旗舰期刊SPM发表专题综述论文。本工作提出的实用、紧致的压缩感知网络PCNet进一步提升了图像压缩感知的精度与效率。

更多信息可访问VILLA实验室主页(https://villa.jianzhang.tech/)或张健助理教授个人主页(https://jianzhang.tech/cn/)。

(供稿人:陈斌,北京大学博士生)

 
 

何恺明在MIT授课的课件PPT下载

 
 

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CVPR 2024 论文和代码下载

在CVer公众号后台回复:CVPR2024,即可下载CVPR 2024论文和代码开源的论文合集

Mamba、多模态和扩散模型交流群成立

 
 
扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-Mamba、多模态学习或者扩散模型微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者扩散模型+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

 
 
▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习
 
 
▲点击上方卡片,关注CVer公众号
整理不易,请赞和在看
内容概要:本文档详细介绍了Android开发中内容提供者(ContentProvider)的使用方法及其在应用间数据共享的作用。首先解释了ContentProvider作为四大组件之一,能够为应用程序提供统一的数据访问接口,支持不同应用间的跨进程数据共享。接着阐述了ContentProvider的核心方法如onCreate、insert、delete、update、querygetType的具体功能与应用场景。文档还深入讲解了Uri的结构作用,它是ContentProvider中用于定位资源的重要标识。此外,文档说明了如何通过ContentResolver在客户端应用中访问其他应用的数据,并介绍了Android 6.0及以上版本的运行时权限管理机制,包括权限检查、申请及处理用户的选择结果。最后,文档提供了具体的实例,如通过ContentProvider读写联系人信息、监听短信变化、使用FileProvider发送彩信安装应用等。 适合人群:对Android开发有一定了解,尤其是希望深入理解应用间数据交互机制的开发者。 使用场景及目标:①掌握ContentProvider的基本概念主要方法的应用;②学会使用Uri进行资源定位;③理解并实现ContentResolver访问其他应用的数据;④熟悉Android 6.0以后版本的权限管理流程;⑤掌握FileProvider在发送彩信安装应用中的应用。 阅读建议:建议读者在学习过程中结合实际项目练习,特别是在理解实现ContentProvider、ContentResolver以及权限管理相关代码时,多进行代码调试测试,确保对每个知识点都有深刻的理解。
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问操作其权限范围内的功能数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
### TPAMI 2024 年关于图像去噪的研究概述 在TPAMI 2024年的研究中,有一篇重要的论文提出了无需去噪的含噪图像表示方法[^1]。这项工作旨在解决具有挑战性的噪声退化问题,并提出了一种新的时频判别图像表示技术。这种方法不仅能够提供信息噪声鲁棒性,还能保持几何不变性,而不需要任何学习过程或显式的去噪操作。 具体而言,这种新方法适用于多种小规模鲁棒视觉问题,尤其是在安全取证领域中的对抗假设场景下表现出显著潜力。其核心优势在于能够在不依赖传统去噪算法的情况下实现对含噪图像的有效表征,从而简化了处理流程并提高了效率。 此外,在多模态图像修复与融合方面也有相关进展。另一项研究表明,通过设计一种名为DeepMCDL的新颖可解释网络,可以有效应对复杂的图像恢复任务[^2]。尽管此部分重点并非完全集中于单一模式下的去噪问题,但它展示了如何利用深度学习框架结合字典学习机制来提升图像质量,这对于理解更广泛的图像增强策略提供了有价值的见解。 对于特定类型的干扰因素如雨水影响,则存在专门针对此类情况开发的技术方案。例如,“图像去雨Transformer”的研究成果涵盖了多个公开可用的数据集用于验证模型性能,其中包括但不限于Rain200H、Rain200L以及SPAData等[^3]。虽然这些资源主要用于评估去除降雨效果的能力,但从侧面反映了当前学术界对于复杂环境下信号提取的关注程度,这也间接促进了通用型图像去噪理论的发展方向。 综上所述,无论是专注于构建新型无监督式含噪图像表达方式还是探索跨域协作优化路径,都可以看出近年来围绕提高数字媒体抗干扰特性的科研活动正呈现出蓬勃发展的态势。 ```python # 示例代码片段展示可能应用于图像预处理阶段的操作逻辑 import numpy as np def apply_noise_robust_representation(image_array): # 假设此处实现了基于时频分析的方法 transformed_image = np.fft.fftshift(np.fft.fft2(image_array)) return abs(transformed_image) # 调用函数模拟输入输出转换过程 noisy_input = np.random.rand(256, 256) * 255 processed_output = apply_noise_robust_representation(noisy_input) ``` ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值