“是我创造了第一个LLM“!Kaggle前首席科学家一句话引发AI学术圈考古行动

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—>【顶会/顶刊】投稿交流群

添加微信号:CVer2233,小助手会拉你进群!

扫描下方二维码,加入CVer学术星球!可以获得最新顶会/顶刊上的论文idea和CV从入门到精通资料,及最前沿应用!发论文/搞科研/涨薪,强烈推荐!

图片

梦晨 发自 凹非寺
量子位 | 公众号 QbitAI

论如何在技术圈争论中一句话噎到对方:

哥们,是我创造了第一个大语言模型。

图片

发言者Jeremy Howard为澳大利亚昆士兰大学名誉教授、曾任Kaggle创始总裁和首席科学家,现answer.ai与fast.ai创始人,。

图片

事情的起因是有人质疑他最近的项目llms.txt在帮助大模型爬取互联网信息上并没太大作用,从而引发了这段争论,迅速引起众人围观。

闻讯而来的“赛博考古学家们”一番考据之后,发现第一个大语言模型这个说法还真有理有据:

2018年初,Jeremy Howard发表的论文ULMFiT,使用非监督预训练-微调范式达到当时NLP领域的SOTA。

图片

甚至GPT-1的一作Alec Radford,在发表GPT-1时也公开承认过ULMFiT是灵感来源之一。

图片

有人搬出综述论文,指出从“遗传学”视角看,ULMFiT是所有现代大模型“最后的共同祖先”。

图片

还有好事者软件工程师Jonathon Belotti,专门写了一篇完整考据《谁才是第一个大语言模型》

图片

大语言模型起源考据

首先来介绍一下ULMFiT这篇论文,入选ACL 2018:

提出有效迁移学习方法,可应用于NLP领域的任何任务,并介绍了微调语言模型的关键技术,在六个文本分类任务上的表现明显优于当时的SOTA方法,在大多数数据集上将错误率降低了18-24%。此外,仅使用100个带标签的示例,它的性能就与在100倍以上数据上从头开始训练的模型性能相当。

图片

那么ULMFit算不算第一个大语言模型呢?Jonathon Belotti考据遵循这样的思路:

首先找一个大家都公认肯定算大语言模型的成果,GPT-1肯定符合这个标准。

图片

再从GPT-1和后续GPT-2、GPT-3中提取一个模型成为成为大语言模型的标准:

  • 首先要是一个语言模型,根据输入预测人类书面语言的组成部分,不一定是单词,而是token

  • 核心方法是自监督训练,数据集是未标记的文本,与此前特定于任务的数据集有很大不同

  • 模型的行为是预测下一个token

  • 能适应新的任务:不需要架构修改,就有few-shot甚至one-shot能力

  • 通用性:可以先进的性能执行各种文本任务,包括分类、问答、解析等

接下来分析GPT-1引用的几个重要模型:原版Transformer,CoVe,ELMo和ULMFiT。

图片

Transformer虽然是现代主流大模型的架构基础,但原版只用于机器翻译任务,还不够通用。同时非Transformer架构如LSTM、Mamba甚至Diffusion也可被视作大型语言模型。

CoVE提出了语境化词向量,是迁移学习领域的一项重要创新,但它通过监督学习训练(英语翻译德语)创建向量,不符合自监督学习的条件。

ELMo使用了自监督预训练和监督微调范式,但在few-shot能力上还差点意思。

总之在作者Jonathon Belotti看来,CoVE和ELMo都还没达到大语言模型的门槛。

最后再来看ULMFiT,其名字代表在文本分类任务微调的通用语言模型(Universal Language Model Fine-tuning for Text Classification)。

它是一个在WikiText数据上自监督训练的LSTM模型,能够以低成本适应新任务,无需更改架构即可执行大量文本分类任务,且达到当时的SOTA性能。

与GPT-1相比,只差在微调不够方便,以及应用任务的广度。

图片

GPT-1论文原文中,也指出“最接近我们工作的”就是ULMFiT与谷歌的半监督序列学习(Semi-supervised Sequence Learning)了。

GPT-1论文还声称,把LSTM换成Transformer后能拓展预训练模型的预测能力,比ULMFit任务适应性更高。

图片

考据者Jonathon Belotti最后总结到:

成为第一重要么?我认为有一点重要。软件行业和学术界尊重其创始人,我们都是开源社区中构建开拓智域文化(homesteads the noosphere)的一部分。

而Jeremy Howard本人对此的后续回应是我们创造了第一个“通用语言模型”,但后续论文没有沿用,反而创造了“大型语言模型”这个新术语。

图片

苹果工程师Nathan Lawrence认为,虽然今天大家对谁是第一个LLM可能存在争议,但最终大家都会把ULMFiT视为一个转折点。

当时即使我这样的怀疑论者,也快开始意识到大规模通用训练将成为NLP的未来。

图片

也有人建议Jeremy Howard以后说ULMFit是第一个“通用预训练模型”。

“我发明了ChatGPT中的GP”,这句话说起来也很酷,一点也不夸张。

ULMFit
https://arxiv.org/abs/1801.06146

GPT-1
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

参考链接:
[1]https://x.com/jeremyphoward/status/1905763446840607164
[2]https://thundergolfer.com/blog/the-first-llm

何恺明在MIT授课的课件PPT下载

在CVer公众号后台回复:何恺明,即可下载本课程的所有566页课件PPT!赶紧学起来!

CVPR 2025 论文和代码下载

在CVer公众号后台回复:CVPR2025,即可下载CVPR 2025论文和代码开源的论文合集

ECCV 2024 论文和代码下载

在CVer公众号后台回复:ECCV2024,即可下载ECCV 2024论文和代码开源的论文合集

CV垂直方向和论文投稿交流群成立

扫描下方二维码,或者添加微信号:CVer2233,即可添加CVer小助手微信,便可申请加入CVer-垂直方向和论文投稿微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer、NeRF、3DGS、Mamba等。
一定要备注:研究方向+地点+学校/公司+昵称(如Mamba、多模态学习或者论文投稿+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群

▲扫码或加微信号: CVer2233,进交流群
CVer计算机视觉(知识星球)来了!想要了解最新最快最好的CV/DL/AI论文速递、优质实战项目、AI行业前沿、从入门到精通学习教程等资料,欢迎扫描下方二维码,加入CVer计算机视觉(知识星球),已汇集上万人!

▲扫码加入星球学习

▲点击上方卡片,关注CVer公众号
整理不易,请点赞和在看
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值