【训练套路】:
建立模型
- 卷积
Inputs → Feature maps
3,32,5,1(默认),(输入3232,输入3232,经计算此处padding为2)
-
最大池化
nn.MaxPool2d(2) -
卷积
-
最大池化
-
卷积
inchannel32,outchannel64,大小没有变所以padding2 -
最大池化
-
展平
把64个4*4的展平 -
线性层
-
线性层
完成模型初始化
import torchvision
from torch import nn
from torch.utils.data import DataLoader
# 准备训练数据集、测试数据集
train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 搭建神经网络
# 一共10个类别(10分类)
class cifar10Net(nn.Module):
def __init__(self):
super(cifar10Net,self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 卷积
nn.MaxPool2d(2), # 最大池化 kernel_size=2
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10),
)
def forward(self,x):
x = self.model(x)
return x
测试网络正确性
# 把上面 ↑ 搭建的网络模型创造出来
# 考察:一般是给一个输入的尺寸,看输出的尺寸是不是我们想要的
# 64 batch_size ; 3 通道 ; 32*32
if __name__ == '__main__':
cifar10net = cifar10Net()
input = torch.ones((64,3,32,32)) # 输入64张图片
output = cifar10net(input)
print(output.shape) # torch.Size([64, 10]) 返回64张图,每一行上10个数据,表示属于这十个类别的概率
在训练文件中引入网络
这两个文件要在同一个文件夹底下
但是这里报错了,上网查了一下:
https://www.cnblogs.com/xiaohuamao/p/6903030.html
但是也不行
原来文件开头不能用数字打头,重新建了一个文件就好了
创建网络模型、训练
# 创建网络模型
cifar10net = cifar10Net()
# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()
# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 把for循环里的东西循环了10次
for i in range(epoch):
print("--------第{}轮训练开始--------".format(i+1))
# --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
# 从训练的 dataloader 中取数据
for data in train_dataloader:
imgs,targets = data
outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
# 获得输出后与真实的target进行对比,得到误差
loss = loss_fn(outputs,targets)
# 进行优化 【先把梯度清零】
optimizer.zero_grad()
# 反向传播,得到每个参数的梯度
loss.backward()
# 对参数优化
optimizer.step()
# --------------完成了一次优化---------------
total_train_step = total_train_step + 1
print("训练次数:{},loss:{}".format(total_train_step,loss)) # 或者loss.item() .item():把tensor数据类型转化为真实数字
如何知道这个模型是否训练好、是否达到需求
可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
这里就不调优了,就利用现有的模型来
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from cifar10NetModel import *
# 准备训练数据集、测试数据集
train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 创建网络模型
cifar10net = cifar10Net()
# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()
# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 把for循环里的东西循环了10次
for i in range(epoch):
print("--------第{}轮训练开始--------".format(i+1))
# --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
# 从训练的 dataloader 中取数据
for data in train_dataloader:
imgs,targets = data
outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
# 获得输出后与真实的target进行对比,得到误差
loss = loss_fn(outputs,targets)
# 进行优化 【先把梯度清零】
optimizer.zero_grad()
# 反向传播,得到每个参数的梯度
loss.backward()
# 对参数优化
optimizer.step()
# --------------完成了一次优化---------------
total_train_step = total_train_step + 1
# if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss)) # 或者loss.item() .item():把tensor数据类型转化为真实数字
# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
# --------------测试步骤开始---------------
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
total_test_loss = 0
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = cifar10net(imgs)
loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失
# 把每次求出的loss加上去,最后得到整体loss
total_test_loss = total_test_loss + loss.item()
print("整体测试集上的loss:{}".format(total_test_loss))
添加tensorboard
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from cifar10NetModel import *
# 准备训练数据集、测试数据集
train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 创建网络模型
cifar10net = cifar10Net()
# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()
# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5
# 添加tensorboard
writer = SummaryWriter("logs_train_cifar10")
# 把for循环里的东西循环了5次
for i in range(epoch):
print("--------第{}轮训练开始--------".format(i+1))
# --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
# 从训练的 dataloader 中取数据
for data in train_dataloader:
imgs,targets = data
outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
# 获得输出后与真实的target进行对比,得到误差
loss = loss_fn(outputs,targets)
# 进行优化 【先把梯度清零】
optimizer.zero_grad()
# 反向传播,得到每个参数的梯度
loss.backward()
# 对参数优化
optimizer.step()
# --------------完成了一次优化---------------
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item())) # 或者loss.item() .item():把tensor数据类型转化为真实数字
# 逢百记录
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
# --------------测试步骤开始---------------
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
total_test_loss = 0
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = cifar10net(imgs)
loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失
# 把每次求出的loss加上去,最后得到整体loss
total_test_loss = total_test_loss + loss.item()
print("整体测试集上的loss:{}".format(total_test_loss))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step = total_test_step + 1
writer.close()
# tensorboard --logdir=logs_train_cifar10 --port=6007
可看到test_loss、train_loss不断下降
保存每一次训练后的模型
计算整体正确率
1,横着看
0,竖着看
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from cifar10NetModel import *
# 准备训练数据集、测试数据集
train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 创建网络模型
cifar10net = cifar10Net()
# 损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()
# 优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5
# 添加tensorboard
writer = SummaryWriter("logs_train_cifar10")
# 把for循环里的东西循环了5次
for i in range(epoch):
print("--------第{}轮训练开始--------".format(i+1))
# --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
# 从训练的 dataloader 中取数据
for data in train_dataloader:
imgs,targets = data
outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
# 获得输出后与真实的target进行对比,得到误差
loss = loss_fn(outputs,targets)
# 进行优化 【先把梯度清零】
optimizer.zero_grad()
# 反向传播,得到每个参数的梯度
loss.backward()
# 对参数优化
optimizer.step()
# --------------完成了一次优化---------------
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item())) # 或者loss.item() .item():把tensor数据类型转化为真实数字
# 逢百记录
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
# --------------测试步骤开始---------------
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_dataloader:
imgs,targets = data
outputs = cifar10net(imgs)
loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失
# 把每次求出的loss加上去,最后得到整体loss
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum() # 添加每次这一小部分的正确率
total_accuracy = total_accuracy + accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
# 保存每一轮训练后的结果
# torch.save(cifar10net,"cifar10net_{}.pth".format(i))
# print("模型已保存")
writer.close()
# tensorboard --logdir=logs_train_cifar10 --port=6007
模型.train() 模型.eval()
分别是把模型设置成训练模式、测试模式
但是前面写的代码都没用这种模式,依旧可以训练、测试
前面写过的代码里并没有这两个层
现在加上,更完整
没改什么,但是加了一些注释
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from cifar10NetModel import *
# 【1】准备训练数据集、测试数据集
train_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./datasetCIFAR10",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 【2】利用DataLoader加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)
# 【3】创建网络模型
cifar10net = cifar10Net()
# 【4】损失函数
# 因为分类问题,可以用到“损失函数”课中讲的交叉熵
loss_fn = nn.CrossEntropyLoss()
# 【5】优化器
# learning_rate = 0.01
learning_rate = 1e-2 # 1e-2 = 1x(10)^(-2) = 1/100 = 0.01
# parameters填建立的网络模型
optimizer = torch.optim.SGD(cifar10net.parameters(),lr=learning_rate)
# 【6】设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数,使之能够多次训练
epoch = 5
# 添加tensorboard
writer = SummaryWriter("logs_train_cifar10")
# 把for循环里的东西循环了5次
for i in range(epoch):
print("--------第{}轮训练开始--------".format(i+1))
# --------------训练步骤开始(优化器调优)--------------- 梯度清零、反向传播、参数优化、变量加一
# 【7】网络进入训练状态
cifar10net.train()
# 从训练的 dataloader 中【取数据】
for data in train_dataloader:
imgs,targets = data
outputs = cifar10net(imgs) # 把训练数据送到网络中,获得相应输出
# 获得输出后与真实的target进行对比,得到【误差】
loss = loss_fn(outputs,targets)
# 进行优化 【先把梯度清零】
optimizer.zero_grad()
# 反向传播,得到每个参数的梯度
loss.backward()
# 对参数【优化】
optimizer.step()
# --------------完成了一次优化---------------
# 【感知输出】
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{},loss:{}".format(total_train_step,loss.item())) # 或者loss.item() .item():把tensor数据类型转化为真实数字
# 逢百记录
writer.add_scalar("train_loss",loss.item(),total_train_step)
# 如何知道这个模型是否训练好、是否达到需求
# 可以在每一轮训练后进行测试,在测试集上跑一边,利用在测试集输出的正确率来衡量。
# --------------测试步骤开始---------------
# 【8】测试
cifar10net.eval()
# 这里就不调优了,就利用现有的模型来 (with torch.no_grad())
total_test_loss = 0
total_accuracy = 0
# 【with torch.no_grad()】此时只需要测试,不需要对梯度进行调整!重要!
with torch.no_grad():
for data in test_dataloader: #【取数据】
imgs,targets = data
outputs = cifar10net(imgs)
loss = loss_fn(outputs,targets) # 一部分数据(data),not测试集整体数据的损失 【误差】
# 把每次求出的loss加上去,最后得到整体loss
total_test_loss = total_test_loss + loss.item()
# 【显示误差】
accuracy = (outputs.argmax(1) == targets).sum() # 添加每次这一小部分的正确率
total_accuracy = total_accuracy + accuracy
# 展示训练的网络在测试集上的效果
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
total_test_step = total_test_step + 1
# 【保存】每一轮训练后的结果
# (方式一)
# torch.save(cifar10net,"cifar10net_{}.pth".format(i))
# (方式二)
# torch.save(cifar10net.state_dict(),"cifar10net_{}.pth".format(i))
# print("模型已保存")
writer.close()
# tensorboard --logdir=logs_train_cifar10 --port=6007
用GPU训练
【测试套路】:
输入图片与尺寸
相对路径:两个点是上一目录
……
发现这个图片的大小是 261210,而上面模型的输入是3232
import torch
import torchvision.transforms
from PIL import Image
from torch import nn
image_path = "D:\Projects\PycharmProjects\pythonProject\images\dog.png"
image = Image.open(image_path)
print(image) # <PIL.PngImagePlugin.PngImageFile image mode=RGB size=261x210 at 0x1686FAAE310>
# 因为png是四通道,除了RGB三通道外还有一个透明通道。所以调用这段代码保留颜色通道
# 如果图片本来就是三个通道,调用此操作后不变。
# 加上这一步后可以适应png、jpg各种格式的图片
# 不同截图软件保留的通道数不一样
# image = image.convert('RGB')
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)
# 拷贝的网络模型
# 粘贴的是参数,需要把参数放入到网络模型中去,没有模型只放参数是不可能运行的
class cifar10Net(nn.Module):
def __init__(self):
super(cifar10Net,self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3,32,5,1,2), # 卷积
nn.MaxPool2d(2), # 最大池化 kernel_size=2
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10),
)
def forward(self,x):
x = self.model(x)
return x
# 加载模型
model = torch.load("cifar10net_9.pth")
print(model)
# 模型网络的输入要求张量的阶数为4,
# 即(batch_size, Channel,Hight,weight),一般的图片输入为3阶张量,
# 即(Channel:3, Hight:32, Weight:32)。
image = torch.reshape(image,(1,3,32,32))
model.eval()
with torch.no_grad(): # 节约内存、性能
output = model(image)
print(output)
# 预测输出:tensor([[ 2.2722, -1.4881, -0.8504, 1.8632, 0.8308, 1.0495, 0.6538, -1.5160,
# -0.6486, -1.6084]])
# 第0类最大 tensor([0]) 不准确,dog是类5
print(output.argmax(1))
预测错了,哈哈哈哈,但是总体思路就是这样。