【R语言】地理探测器模拟及分析(Geographical detector)

1. 写在前面

🗺️🔍地理探测器是一种用于探测空间分异性以及揭示其背后驱动因子的统计学方法。它由中国科学院地理科学与资源研究所的王劲峰研究员提出,并已被广泛应用于社会环境因素和自然环境因素的影响机理研究。地理探测器模型的核心思想是,如果某个自变量对某个因变量有重要影响,那么自变量和因变量的空间分布应该具有相似性。通过计算和比较各单因子的q值,可以判断它们对空间分异性的解释力,q值越大表示解释力越强。
  在当前的研究进展方面,地理探测器已经被应用于多个领域,包括城市扩张驱动力因素分析、健康与风险因子关系的评估、土壤重金属的空间分异及其影响因素分析、青藏高原多年冻土分布影响因子分析等。此外,地理探测器模型的最优离散化研究也取得了进展,这对于提高模型评估结果的精度具有重要意义。
✨✨地理探测器模型的优势在于它没有过多的假设条件,可以克服传统统计方法处理变量所受的限制,因此在空间分析领域得到了广泛的应用和认可。随着研究的深入,地理探测器模型也在不断地优化和发展,以适应更多领域的研究需求。
  当前已有很多的中英文文献涉及到了地理探测器,地理探测器主要包括了因子探测器、交互探测器、风险探测器和生态探测,其中因子探测器和交互探测器使用较为广泛。我个人人为交互探测器可以探测不同环境因子的交互作用,可以更加深刻地认识到环境变量之间的非线性、非对称和动态影响。

### 使用 Python 实现地理探测器与 K-Means 聚类 #### 地理探测器简介 地理探测器是一种用于分析空间分异特征及其成因的空间统计工具。该方法能够识别不同因素对某一现象的影响程度,并能检测这些因素之间是否存在交互作用。 #### K-Means 聚类概述 K-means 算法在一般数据集上可以获得较好的聚类效果,但同时也存在若干问题:需要预先设定聚类个数 \(k\);算法对于簇中心点起始位置敏感,不同的初始位置可能导致不同的结果;受噪声数据影响较大;仅适用于发现球状簇[^1]。 #### 安装依赖库 为了实现这两个功能,首先确认已安装必要的 Python 库: ```bash pip install geopandas pandas scikit-learn matplotlib seaborn ``` #### 导入所需模块并加载数据 下面展示如何导入所需的 Python 模块以及准备要处理的数据集: ```python import numpy as np import pandas as pd from sklearn.cluster import KMeans, MiniBatchKMeans # 引入K-means模型 from sklearn.preprocessing import StandardScaler # 数据标准化 import geopandas as gpd # 处理地理信息 import matplotlib.pyplot as plt # 可视化绘图 import seaborn as sns # 更美观的图表绘制 sns.set() # 设置seaborn样式 plt.rcParams['font.sans-serif']=['SimHei'] # 解决中文显示乱码问题 plt.rcParams['axes.unicode_minus']=False # 正常显示负号 ``` #### 准备数据 假设有一个包含地理位置坐标和其他属性字段的数据框 `df`,其中至少应包括经度 (`longitude`) 和纬度 (`latitude`) 列。如果使用 GeoDataFrame,则可以直接利用其内置几何列来进行后续操作。 ```python # 创建示例GeoDataFrame (实际应用中请替换为真实数据) gdf = gpd.GeoDataFrame( df, geometry=gpd.points_from_xy(df.longitude, df.latitude), crs="EPSG:4326" ) # 查看前几条记录以验证数据读取情况 print(gdf.head()) ``` #### 执行 K-Means 聚类 接下来是对选定变量执行标准 K-means 或者 mini-batch 版本的 K-means 聚类过程: ```python def perform_kmeans_clustering(dataframe, n_clusters=5): """ 对给定的数据帧执行K-means聚类 参数: dataframe : DataFrame or GeoDataFrame 输入数据集合. n_clusters : int 预期形成的类别数量,默认值设为5. 返回: clustered_data : DataFrame with cluster labels added 带有新'cluster_label'列的结果表单. """ scaler = StandardScaler() scaled_features = scaler.fit_transform(dataframe[['longitude', 'latitude']]) km_model = KMeans(n_clusters=n_clusters, random_state=0).fit(scaled_features) mbkm_model = MiniBatchKMeans(n_clusters=n_clusters, batch_size=100, random_state=0).fit(scaled_features) result_df = dataframe.copy() result_df['cluster_label_km'] = km_model.labels_ result_df['cluster_label_mbkm'] = mbkm_model.labels_ return result_df # 将函数应用于之前创建好的GeoDataFrame对象 result_gdf = perform_kmeans_clustering(gdf, n_clusters=8) ``` #### 结果可视化 最后一步是通过地图形式展现聚类后的分布状况: ```python fig, ax = plt.subplots(figsize=(12, 9)) for i in range(8): # 这里假设有八个集群 subset = result_gdf[result_gdf['cluster_label_km']==i] subset.plot(ax=ax, markersize=50, label=f'Cluster {i}') ax.legend(title='Clusters') plt.title('Geographical Detector & K-Means Clustering Result Visualization') plt.show() ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackson的生态模型

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值