Rating prediction and Ranking prediction

在推荐系统中,主要有两种效果的评价方式,一种是Rating prediction,另外一种是Ranking prediction,以下就是两者之间的一些差别:

  1. Rating Prediction:所用的评价指标主要是MSE(Mean Square Error), RMSE(Root Mean Square Error);
  2. Ranking Prediction:常用的指标主要是Precision@k, NDCG@k, F1@k, Recall@k
  3. Rating Prediction更加关注的是observed rating,因此经常用于CF中
  4. Ranking Prediction更加关注的用户是否rated过某一个item(whether the user has rated those items or not), 因此经常用于OCCF(One Class Collaborative Filtering)中。

但是,在Ranking Prediction问题中,我们往往需要先对于候选集物品进行rating prediction,然后根据rating对于候选集物品进行排序,因此Ranking Prediction中往往会有Rating Prediction的存在。

补充:

如果是借助rating={1,2,3,4,5}的数据来直接进行Ranking Prediction的情况属于:Collborative Ranking(协同排序)问题,如果在进行效果提升比较的时候,所用的Baseline 方法与上述Rating/Ranking Prediction的Baseline不同

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

 

具体细见论文或者Google"Rating prediction, ranking prediction".

 

 

 

转载于:https://www.cnblogs.com/liuji/p/8259976.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值