常微分方程——连续动力系统部分知识备忘

最近为了重拾一下曾经没学懂的部分,这里抄书抄笔记等附带一些个人想法留作记录。

Lyapunov直接法

首先我们为什么要用Lyapunov直接法,也就是Lyapunov第二方法?
在学习Lyapunov稳定性时,非线性系统零解稳定性判定的时候:
A A A n n n阶常矩阵,向量函数R(t, x ⃗ \vec{x} x )在区域 G = { ( t , x ⃗ ) ∈ R n + 1 : t ≥ t 0 , ∣ ∣ x ⃗ ∣ ∣ ≤ M } G = \{(t,\vec{x}) \in R^{n+1}:t \ge t_0,|| \vec{x} || \le M \} G={(t,x )Rn+1:tt0,∣∣x ∣∣M}上连续,关于 x ⃗ \vec{x} x 满足Lipschitz条件且 ∀ t ≥ t 0 \forall t \ge t_0 tt0满足:
R ( t , x ⃗ ) ≡ 0 lim ⁡ ∣ ∣ x ∣ ∣ → 0 ∣ ∣ R ( t , x ⃗ ) ∣ ∣ ∣ ∣ x ⃗ ∣ ∣ = 0 (1) R(t,\vec{x}) \equiv 0 \\ \lim\limits_{||x|| \to 0} \dfrac {||R(t,\vec{x})||} {||\vec{x}||} = 0 \tag{1} R(t,x )0∣∣x∣∣0lim∣∣x ∣∣∣∣R(t,x )∣∣=0(1)

d x ⃗ d t = A x ⃗ + R ( t , x ⃗ ) (2) \dfrac {d\vec{x}} {dt} =A\vec{x} + R(t,\vec{x}) \tag{2} dtdx =Ax +R(t,x )(2)
的零解:
1.当A全部特征根的实部都是负数时是渐近稳定的;
2.当A的特征根中至少有一个实部为正不稳定的。

实际上,有一种临界情形,也就是矩阵 A A A具有实部为0的特征根的情形。上述由线性近似来判定稳定性的方法并没有回答这个问题。因为这个时候方程的零解稳定性可能不仅由其线性部分来决定,其高阶项的影响也是不可以简单忽略掉的。
那么这个时候就要请出我们的第二方法。
Lyapunov第二方法阐述如下:
x ∈ R n , f ( 0 ⃗ ) = 0 ⃗ x \in R^n,\textbf{f} (\vec{0}) = \vec{0} xRn,f(0 )=0 f ( x ⃗ ) \textbf{f}(\vec{x}) f(x )在区域 G = { x ∈ R n : ∣ ∣ x ⃗ ∣ ∣ ≤ M } G = \{\textbf{x} \in R^n:||\vec{x}|| \le M\} G={xRn:∣∣x ∣∣M}内连续可微。考虑:
d x ⃗ d t = f ( x ⃗ ) (3) \dfrac {d\vec{x}} {dt} = \textbf{f} (\vec{x}) \tag{3} dtdx =f(x )(3)
由Picard定理,它的初值问题解存在唯一且有零解。

Lyapunov第二方法的基本想法

观察在零解附近任意一个解的 x ⃗ ( t ) \vec{x}(t) x (t)轨道是否随着 t t t的变化越来越接近零解或者始终不远离(渐进)。

如何观察?第二方法告诉了我们一个构造函数的方法。实际上,这个构造的函数为了达到上述想法,我们可以从“能量函数”(让我想起Hamilton系统),“位势函数”(divergence是自然的想法),“距离函数”(范数,衡量距离的工具)等方向思考入手,用来检测 x ⃗ ( t ) \vec{x}(t) x (t)与原点 O O O的位置关系。
那么这个函数,我们当然会想好一点。比如这个函数可以连续,可以可微,甚至可微性要很好,不要在某些点趋近病态变化。

那么第二方法给了我们一个方法如下:
对于定正连续可微函数 V ( x ⃗ ) V(\vec{x}) V(x )来观察轨道上动点 x ⃗ ( t ) \vec{x}(t) x (t)与原点 O O O的位置关系。 V ( x ⃗ ( t ) ) V(\vec{x} (t)) V(x (t))关于 t t t的增加或者减少可以反映出轨道运动的稳定性。
考虑将(3)中的解 x ⃗ ( t ) \vec{x} (t) x (t)代入 V ( x ⃗ ) V(\vec{x}) V(x )并考虑对 t t t的导数:
d V d t ∣ ( 3 ) = d V ( x ⃗ ( t ) ) d t = ∑ i = 1 n ∂ V ∂ x i d x i d t = ∑ i = 1 n ∂ V ∂ x i f i \dfrac {dV} {dt} | _{(3)} = \dfrac {dV(\vec{x}(t))} {dt} = \sum_{i=1}^n \dfrac {\partial V} {\partial x_i} \dfrac {d x_i} {dt} = \sum_{i=1}^n \dfrac {\partial V} {\partial x_i} f_i dtdV(3)=dtdV(x (t))=i=1nxiVdtdxi=i=1nxiVfi
上述称为 V ( x ⃗ ) V(\vec{x}) V(x )通过系统(3)的全导数

Lyapunov稳定性判据

1.若存在定正函数 V ( x ⃗ ) V(\vec{x}) V(x ),且通过系统(3)的全导数为常负的,则(3)零解稳定
2.若存在定正函数 V ( x ⃗ ) V(\vec{x}) V(x ),且通过系统(3)的全导数为定负的,则(3)零解渐进稳定
3.若存在定正函数 V ( x ⃗ ) V(\vec{x}) V(x ),且通过系统(3)的全导数为定正的,则(3)零解不稳定
证明可看张伟年第二版p174

那么接下来的问题就是如何构造这个Lyapunov函数 V ( x ⃗ ) V(\vec{x}) V(x )
很遗憾的是,没有一般方法构造这个函数。所以人们有时候寻求二次型构造,有时候把系统理解为质点的运动方程,用系统的总能量构造。

以二维来看,系统(3)的解可以看成平面上以 t t t为参数的轨道。若 V V V定正,当c充分小时,随着c逐渐增大,曲线族 V ( x 1 , x 2 ) = c ( c > 0 ) V(x_1,x_2) = c(c>0) V(x1,x2)=c(c>0)为包含原点在内但不相交的一个一个嵌套的曲线族如下:
曲线族
上述的稳定性判据在二维的情况下,可以理解为:
若导数 V ˙ ≤ 0 \dot V \le 0 V˙0(常负),则 x ⃗ ( t ) = ( x 1 ( t ) , x 2 ( t ) ) \vec{x}(t) = (x_1(t),x_2(t)) x (t)=(x1(t),x2(t)) t ≥ t 0 t \ge t_0 tt0为不增函数,因此轨道要么随着 t t t的增加一层层进入闭曲线族,要么沿着这些曲线运动,但不会由这些曲线的内部走到外部去,从而零解稳定。
若导数 V ˙ \dot V V˙定负,则任一轨道当 t ≥ t 0 t \ge t_0 tt0时只能随着 t t t的增加由外向内进入闭曲线族 V ( x 1 , x 2 ) = c V(x_1,x_2) = c V(x1,x2)=c并渐进地趋于原点。
不稳定时,会走出去。
这里可以看出来渐近稳定(下面穿出去 δ \delta δ又穿回来的)是比稳定(上面穿出去 δ \delta δ不回来但是在 ϵ \epsilon ϵ代表的轨道里的)更强的条件,因为渐近稳定下系统会收敛到零解。
稳定

弱化稳定的情况

例:研究系统
{ x ˙ = y − x y 2 y ˙ = − x 3 \begin{cases} \dot x = y - xy^2 \\ \dot y = -x^3 \end{cases} {x˙=yxy2y˙=x3
的稳定性。
这个时候取二次型是不行的。
二次型上有一个一般的定正函数:
V ( x , y ) = a x 2 m + b y 2 n m , n ∈ N ∗ V(x,y) = ax^{2m} + by^{2n} \\ m,n \in N^* V(x,y)=ax2m+by2nm,nN
a , b a,b a,b待定。
计算对于系统的全导数后:
d V d t = 2 ( m a x 2 m − 1 y − n b x 3 y 2 n − 1 − m a x 2 m y 2 ) \dfrac {dV} {dt} = 2(max^{2m-1}y - nbx^3y^{2n-1} - max^{2m}y^2) dtdV=2(max2m1ynbx3y2n1max2my2)
m = 2 , n = 1 , a = 1 , b = 2 m=2,n=1,a=1,b=2 m=2,n=1,a=1,b=2,则有:
V ( x , y ) = x 4 + 2 y 2 , d V d t = − 4 x 4 y 2 V(x,y) = x^4 + 2y^2,\dfrac {dV} {dt} = -4x^4y^2 V(x,y)=x4+2y2,dtdV=4x4y2
这个时候的 V ˙ \dot V V˙就很合意,因为它常负, V V V定正,可以使用上述稳定性判据,于是零解稳定。但是零解是否是渐进稳定的呢?
巴尔巴欣-克拉索夫斯基定理
若存在定正函数 V ( x ⃗ ) V(\vec{x}) V(x ),其通过方程组(3)的全导数 d V d t \frac {dV} {dt} dtdV为常负函数,但让 d V d t = 0 \frac {dV} {dt} = 0 dtdV=0的点 x ⃗ \vec{x} x 的集合中除(3)的零解外不包含(3)的整条正半轨(即 x ⃗ = ( x 1 ( t ) , x 2 ( t ) , …   ) \vec{x} = (x_1(t),x_2(t),\dots) x =(x1(t),x2(t),) t ≥ t 0 t \ge t_0 tt0在平面上定义的曲线),则方程组(3)的零解是渐近稳定的。
那么上例中,显然 V V V是定正的, d V d t \frac {dV} {dt} dtdV是常负的,但是让 d V d t = 0 \frac {dV} {dt} = 0 dtdV=0的点集中除了零解(此处是 ( x , y ) = ( 0 , 0 ) (x,y) = (0,0) (x,y)=(0,0)外不包括整条正半轨),故由上述定理可以得知零解稳定。

  • 14
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值