常微分方程复习——连续动力系统极限环备忘

🚩本文内容

  • 极限环及其稳定性
  • 极限环存在性判定

🚩学习目标

  • 掌握极限环及其稳定性的概念与内容
  • 了解Poincare-Bendixson环域定理
  • 了解极限环不存在的判定定理Bendixson判据和Dulac判据

极限环及其稳定性

极限环:在相平面上,是孤立的闭轨,是另外轨道的极限集合。
孤立:简单来说,闭轨孤立意味着轨迹在系统中是独立存在的,不会与其他轨迹混合。
极限环的稳定性
1.稳定极限环:如果 t → + ∞ t \to +\infty t+时,极限环 Γ \Gamma Γ内外两侧的轨道都盘旋趋于 Γ \Gamma Γ
2.不稳定极限环:如果 t → − ∞ t \to -\infty t时,极限环 Γ \Gamma Γ内外两侧的轨道都盘旋趋于 Γ \Gamma Γ
3.半稳定极限环:如果 t → + ∞ t \to +\infty t+时,极限环 Γ \Gamma Γ某一侧的轨道盘旋趋于 Γ \Gamma Γ,而另一侧的轨道于 t → − ∞ t \to -\infty t时盘旋趋于 Γ \Gamma Γ
极限环种类与分辨
以上图片摘自张伟年常微分方程第二版p191。
从图中可以看到,稳定极限环的内外两侧轨道极限都是趋于一个轨道(黑线更明显的那一块)。
不稳定极限环仅在轨道最开始( t → − ∞ t \to -\infty t)会趋于极限环。
半稳定极限环:内外两侧在 t → + ∞ t \to +\infty t+时仅一个趋于,另一个不趋于。
流线图如下:
对于平面系统:
{ x ˙ = − y − x ( x 2 + y 2 − 1 ) y ˙ = x − y ( x 2 + y 2 − 1 ) (1) \begin{cases} \dot x = -y - x(x^2+y^2-1) \\ \dot y = x - y(x^2+y^2-1) \end{cases} \tag{1} { x˙=yx(x2+y21)y˙=xy(x2+y21)(1)
可以化简为
{ r ˙ = − r ( r 2 − 1 ) θ ˙ = 1 (2) \begin{cases} \dot r = -r(r^2-1) \\ \dot \theta = 1 \end{cases} \tag{2} { r˙=r(r21)θ˙=1(2)
其中 r = x 2 + y 2 , x = r cos ⁡ θ , y = r sin ⁡ θ r = \sqrt{x^2 + y^2},x = r\cos \theta,y=r\sin \theta r=x2+y2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值