常微分方程复习——连续动力系统极限环备忘

🚩本文内容

  • 极限环及其稳定性
  • 极限环存在性判定

🚩学习目标

  • 掌握极限环及其稳定性的概念与内容
  • 了解Poincare-Bendixson环域定理
  • 了解极限环不存在的判定定理Bendixson判据和Dulac判据

极限环及其稳定性

极限环:在相平面上,是孤立的闭轨,是另外轨道的极限集合。
孤立:简单来说,闭轨孤立意味着轨迹在系统中是独立存在的,不会与其他轨迹混合。
极限环的稳定性
1.稳定极限环:如果 t → + ∞ t \to +\infty t+时,极限环 Γ \Gamma Γ内外两侧的轨道都盘旋趋于 Γ \Gamma Γ
2.不稳定极限环:如果 t → − ∞ t \to -\infty t时,极限环 Γ \Gamma Γ内外两侧的轨道都盘旋趋于 Γ \Gamma Γ
3.半稳定极限环:如果 t → + ∞ t \to +\infty t+时,极限环 Γ \Gamma Γ某一侧的轨道盘旋趋于 Γ \Gamma Γ,而另一侧的轨道于 t → − ∞ t \to -\infty t时盘旋趋于 Γ \Gamma Γ
极限环种类与分辨
以上图片摘自张伟年常微分方程第二版p191。
从图中可以看到,稳定极限环的内外两侧轨道极限都是趋于一个轨道(黑线更明显的那一块)。
不稳定极限环仅在轨道最开始( t → − ∞ t \to -\infty t)会趋于极限环。
半稳定极限环:内外两侧在 t → + ∞ t \to +\infty t+时仅一个趋于,另一个不趋于。
流线图如下:
对于平面系统:
{ x ˙ = − y − x ( x 2 + y 2 − 1 ) y ˙ = x − y ( x 2 + y 2 − 1 ) (1) \begin{cases} \dot x = -y - x(x^2+y^2-1) \\ \dot y = x - y(x^2+y^2-1) \end{cases} \tag{1} {x˙=yx(x2+y21)y˙=xy(x2+y21)(1)
可以化简为
{ r ˙ = − r ( r 2 − 1 ) θ ˙ = 1 (2) \begin{cases} \dot r = -r(r^2-1) \\ \dot \theta = 1 \end{cases} \tag{2} {r˙=r(r21)θ˙=1(2)
其中 r = x 2 + y 2 , x = r cos ⁡ θ , y = r sin ⁡ θ r = \sqrt{x^2 + y^2},x = r\cos \theta,y=r\sin \theta r=x2+y2 ,x=rcosθ,y=rsinθ
不难发现 r = 1 r = 1 r=1是解,对应闭轨(单位圆); r = 0 r=0 r=0也是解,对应奇点。
稳定极限环
代码如下:

function  poincare()
    clear,clc,close all
    % 画流线图
    [x1,x2]=meshgrid(linspace(-2.5,2.5,100));
    x1d = x2-x1.*(x1.^2+x2.^2-1);
    x2d = -x1-x2.*(x1.^2+x2.^2-1);
    l = streamslice(x1,x2,x1d,x2d);
    set(l,'color','red');
    % 定义角度
    theta = linspace(0, 2*pi, 100);

    % 计算圆上的点
    x = cos(theta);
    y = sin(theta);
    
    % 补单位圆
    hold on;
    plot(x, y, 'b-', 'LineWidth', 2);
    axis([-2.5,2.5,-2.5,2.5])
    grid on
    xlabel('x1')
    ylabel('x2')
    title('稳定极限环')
end

思考:如果:
{ x ˙ = y − x ( x 2 + y 2 − 1 ) ( x 2 + y 2 − 2 ) y ˙ = − x − y ( x 2 + y 2 − 1 ) ( x 2 + y 2 − 2 ) (3) \begin{cases} \dot x = y - x(x^2+y^2-1)(x^2+y^2-2) \\ \dot y = -x - y(x^2+y^2-1)(x^2+y^2-2) \end{cases} \tag{3} {x˙=yx(x2+y21)(x2+y22)y˙=xy(x2+y21)(x2+y22)(3)
此时又该如何观察极限环以及积分曲线的趋向?
提示:首次积分:
V 1 ( t , x , y ) = ( x 2 + y 2 ) ( x 2 + y 2 − 2 ) ( x 2 + y 2 − 1 ) − 2 e 4 t V 2 ( t , x , y ) = arctan ⁡ y x + t V_1(t,x,y) = (x^2+y^2)(x^2+y^2-2)(x^2+y^2-1)^{-2}e^{4t} \\ V_2(t,x,y) = \arctan \dfrac y x + t V1(t,x,y)=(x2+y2)(x2+y22)(x2+y21)2e4tV2(t,x,y)=arctanxy+t
利用极坐标变换并令 V 1 = c 1 , V 2 = c 2 V_1 = c_1,V_2 = c_2 V1=c1,V2=c2可知:
x = 1 ± 1 1 − c 1 e − 4 t cos ⁡ ( c 2 − t ) y = 1 ± 1 1 − c 1 e − 4 t sin ⁡ ( c 2 − t ) x = \sqrt{1 \pm \dfrac 1 {\sqrt{1-c_1e^{-4t}}}} \cos(c_2 - t) \\ y = \sqrt{1 \pm \dfrac 1 {\sqrt{1-c_1e^{-4t}}}} \sin(c_2 - t) x=1±1c1e4t 1 cos(c2t)y=1±1c1e4t 1 sin(c2t)
两个极限环

极限环存在性与否的判定

极限环存在性判定

Poincare-Bendixson环域定理

考虑平面非线性系统:
{ x ˙ = X ( x , y ) y ˙ = Y ( x , y ) (4) \begin{cases} \dot x = X(x,y) \\ \dot y = Y(x,y) \end{cases} \tag{4} {x˙=X(x,y)y˙=Y(x,y)(4)
设函数 X ( x , y ) X(x,y) X(x,y) Y ( x , y ) Y(x,y) Y(x,y)是在平面上某区域 G G G中的连续可微函数,如果在 G G G内存在有界环形闭区域 D ‾ = L 1 ∪ D ∪ L 2 \overline D = L_1 \cup D \cup L_2 D=L1DL2
其中 L 1 L_1 L1 D D D的内边界, L 2 L_2 L2 D D D的外边界,而 L 1 , L 2 L_1,L_2 L1,L2都是简单闭曲线而不是(4)的闭轨。
满足条件:

  • D ‾ \overline D D中不含(4)的平衡点
  • (4)从 L 1 , L 2 L_1,L_2 L1,L2上出发的轨道都不能离开或者都不能进入 D ‾ \overline D D

则(4)在 D D D内存在一条闭轨。
如果能进一步判断闭轨是孤立的,则它就是极限环。

极限环不存在性判定

Bendixson判据

X ( x , y ) X(x,y) X(x,y) Y ( x , y ) Y(x,y) Y(x,y)在平面某区域G内连续可微,如果在单连通区域内 D ⊂ G D \subset G DG d i v ( X , Y ) \mathbf{div} (X,Y) div(X,Y)不变号且在 D D D内任意子区域上都不恒为零,则系统(4)在 D D D内不存在闭轨。
证明:
∬ D d i v ( X , Y ) d x d y = ∬ D ( ∂ X ∂ x + ∂ Y ∂ y ) d x d y = ∮ Γ X d y − Y d x ≠ 0 \iint \limits_D \mathbf{div}(X,Y)dxdy = \iint \limits_D (\dfrac {\partial X} {\partial x} + \dfrac {\partial Y} {\partial y})dxdy = \oint_{\Gamma} Xdy - Ydx \neq 0 Ddiv(X,Y)dxdy=D(xX+yY)dxdy=ΓXdyYdx=0
又因为
X d y − Y d x = X y ˙ − Y x ˙ = X Y − Y X = 0 Xdy - Ydx = X\dot y - Y \dot x = XY - YX = 0 XdyYdx=Xy˙Yx˙=XYYX=0
矛盾。故闭轨不存在。

Dulac判据

X ( x , y ) X(x,y) X(x,y) Y ( x , y ) Y(x,y) Y(x,y)在平面某区域G内连续可微,如果在 G G G内存在单连通区域 D D D D D D内存在连续可微函数 B ( x , y ) B(x,y) B(x,y),使得在 D D D d i v ( B X , B Y ) \mathbf{div} (BX,BY) div(BX,BY)不变号且在 D D D内任意子区域上都不恒为零,则系统(4)在 D D D内不存在闭轨。
注:

  • Dulac函数可以选择 B = e a x + b y , x a y b B = e^{ax+by},x^a y^b B=eax+by,xayb等形式。
  • Dulac函数 B = 1 B = 1 B=1时即Bendixson判据。
  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值