🚩本文内容
- 极限环及其稳定性
- 极限环存在性判定
🚩学习目标
- 掌握极限环及其稳定性的概念与内容
- 了解Poincare-Bendixson环域定理
- 了解极限环不存在的判定定理Bendixson判据和Dulac判据
极限环及其稳定性
极限环:在相平面上,是孤立的闭轨,是另外轨道的极限集合。
孤立:简单来说,闭轨孤立意味着轨迹在系统中是独立存在的,不会与其他轨迹混合。
极限环的稳定性:
1.稳定极限环:如果 t → + ∞ t \to +\infty t→+∞时,极限环 Γ \Gamma Γ内外两侧的轨道都盘旋趋于 Γ \Gamma Γ
2.不稳定极限环:如果 t → − ∞ t \to -\infty t→−∞时,极限环 Γ \Gamma Γ内外两侧的轨道都盘旋趋于 Γ \Gamma Γ
3.半稳定极限环:如果 t → + ∞ t \to +\infty t→+∞时,极限环 Γ \Gamma Γ某一侧的轨道盘旋趋于 Γ \Gamma Γ,而另一侧的轨道于 t → − ∞ t \to -\infty t→−∞时盘旋趋于 Γ \Gamma Γ
以上图片摘自张伟年常微分方程第二版p191。
从图中可以看到,稳定极限环的内外两侧轨道极限都是趋于一个轨道(黑线更明显的那一块)。
不稳定极限环仅在轨道最开始( t → − ∞ t \to -\infty t→−∞)会趋于极限环。
半稳定极限环:内外两侧在 t → + ∞ t \to +\infty t→+∞时仅一个趋于,另一个不趋于。
流线图如下:
对于平面系统:
{ x ˙ = − y − x ( x 2 + y 2 − 1 ) y ˙ = x − y ( x 2 + y 2 − 1 ) (1) \begin{cases} \dot x = -y - x(x^2+y^2-1) \\ \dot y = x - y(x^2+y^2-1) \end{cases} \tag{1} {
x˙=−y−x(x2+y2−1)y˙=x−y(x2+y2−1)(1)
可以化简为
{ r ˙ = − r ( r 2 − 1 ) θ ˙ = 1 (2) \begin{cases} \dot r = -r(r^2-1) \\ \dot \theta = 1 \end{cases} \tag{2} {
r˙=−r(r2−1)θ˙=1(2)
其中 r = x 2 + y 2 , x = r cos θ , y = r sin θ r = \sqrt{x^2 + y^2},x = r\cos \theta,y=r\sin \theta r=x2+y2