Flink之Watermark策略代码模板

方式作用
WatermarkStrategy.noWatermarks()不生成watermark
WatermarkStrategy.forMonotonousTimestamps()紧跟最大事件时间watermark生成策略
WatermarkStrategy.forBoundedOutOfOrderness()允许乱序watermark生成策略
WatermarkStrategy.forGenerator()自定义watermark生成策略
  • noWatermarks
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark生成策略,选择不生成watermark
          WatermarkStrategy<UserEvent2> watermark = WatermarkStrategy.noWatermarks();
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }
    
    关于noWaterMarks()的使用没有太多内容.
  • forMonotonousTimestamps
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用紧跟最大事件时间策略
          WatermarkStrategy<String> watermark = WatermarkStrategy.<String>forMonotonousTimestamps()
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }
    
    对于forMonotonousTimestamps()可说内容并不多,如果选择了forMonotonousTimestamps这种方式就必须保证事件时间严格有序,如果出现乱序的情况可能存在大量数据丢失的问题.
    通过源码内容可以看到forMonotonousTimestamps底层也是使用的forBoundedOutOfOrderness方式,只不过将容错时间设置为了0,源码如下:
    // 首先看这里,继承的BoundedOutOfOrdernessWatermarks
    public class AscendingTimestampsWatermarks<T> extends BoundedOutOfOrdernessWatermarks<T> {
    
      /** Creates a new watermark generator with for ascending timestamps. */
      public AscendingTimestampsWatermarks() {
          super(Duration.ofMillis(0)); // 这里将容错时间设置为了0
      }
    }
    
  • forBoundedOutOfOrderness
    public class FlinkWaterMark throws Exception {
      public static void main(String[] args) throws Exception {
          StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
          // 获取数据源
          DataStreamSource<String> socketSource = env.socketTextStream("localhost", 8888);
          // 构造watermark, 使用允许水位线乱序策略,并设置最大容错时间为2s
          WatermarkStrategy<String> watermark = WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofMillis(2000))
                  // 抽取时间时间, 根据数据中实际情况选择
                  .withTimestampAssigner(new SerializableTimestampAssigner<String>() {
                      @Override
                      public long extractTimestamp(String element, long recordTimestamp) {
                          /**
                           * 这里是样例代码,实际情况根据具体业务具体数据特性抽取对应的时间
                           **/
                          String time = element.split(",")[0];
                          long timestamp = Long.parseLong(time);
                          return timestamp;
                      }
                  });
          // 将构造完成的watermark分配给数据流
          SingleOutputStreamOperator<UserEvent2> source = socketSource.assignTimestampsAndWatermarks(watermark);
          // ...
          env.execute();
      }
    }
    
    对于允许乱序策略前面文章有介绍过其原理,比如代码中设置容错时间为2S,那么前后的数据差最大只能是2S,如果差值大于2S,后来的这条数据就会被抛弃.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值