Leetcode刷题之旅1——671二叉树中的第二小节点

671题 二叉树中的第二小节点

难度:简单Easy

题目描述:
给定一个非空特殊的二叉树,每个节点都是正数,并且每个节点的子节点数量只能为 2 或 0。如果一个节点有两个子节点的话,那么该节点的值等于两个子节点中较小的一个。更正式地说, r o o t . v a l = m i n ( r o o t . l e f t . v a l , r o o t . r i g h t . v a l ) root.val = min(root.left.val, root.right.val) root.val=min(root.left.val,root.right.val) 总成立。
给出这样的一个二叉树,你需要输出所有节点中的第二小的值。如果第二小的值不存在的话,输出 -1 。

思路: 递归法(recursive method)

由题意,一个节点若有子节点,那么该节点的值为两个子节点中较小的一个。为了方便理解,假设某一节点有两个节点且不相等,则该节点与其左子树节点值一样,右子树为较大值。
从根节点开始看起,第二小的节点肯定是右节点,例如: r o o t = 5 root=5 root=5

     5
   /   \
  5    12

此时12为第二小的节点.从第三层开始就不看12的左右子树了,因为肯定都大于等于12.再来看第二层的5这边,从第三层开始,只看它的右子树,因为只有右子树才有可能比5大,并且夹在5和12中间.例如找到了一个节点值为7,此时7为第二小的节点了,因为 5 < 7 < 12 5 < 7 < 12 5<7<12
每到新的一层要做两件事:
1.先看有没有左右子树并且是否左右子树不相等,若为真,取较大值bigger,做一次判断:
(特殊情况)当为第二层时,即根节点的左右子树时,最终结果res为较大值bigger,此时保证有第二小的值了;
(一般情况)往左子树下探(右子树都是大值了),当发现更小的bigger时更新res;
2.往较小的子树下探.

请看下面的代码:

class Solution {
    int res = -1;
    public int findSecondMinimumValue(TreeNode root) {
        // terminator
        if(root == null) {                                        // 到底了,不用往上返回
            return res;
        }
        // 如果存在子树且值不相等,取较大值bigger,做两种情况判断
        if (root.left != null && root.left.val != root.right.val) {
            // 获取左右子树中将较大的值
            int bigger = root.left.val > root.right.val ? root.left.val : root.right.val;
            // 如果返回值没有被更改过(即第二层),则bigger有可能就是第二小的;如果返回值被更改过(其它层),则新的bigger比老的更小,更新res
            res = res == -1 ? bigger:Math.min(res, bigger);
            // 只往较小的子树下探(因为较大的子树里的值肯定都比res大了)
            findSecondMinimumValue(root.left.val > root.right.val ? root.right : root.left);
        }
        // 如果左右子树相等或为空,分别递归
        else{
            findSecondMinimumValue(root.left);
            findSecondMinimumValue(root.right);
        }
        return res;
    }
}

第一篇文章写完了,还不是特别好,以后慢慢会改进的~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值